期刊文献+

Electrical Characteristics of InGaN/AlGaN and InGaN/GaN MQW Near UV-LEDs

Electrical Characteristics of InGaN/AlGaN and InGaN/GaN MQW Near UV-LEDs
下载PDF
导出
摘要 Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency. Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第11期3245-3248,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 60676032, 60577030, and 60476028, and the National Key Basic Research Special Foundation of China under Grant No TG 2007CB307004.
关键词 coated conductor buffer layer self-epitaxy CEO2 coated conductor, buffer layer, self-epitaxy, CeO2
  • 相关文献

参考文献18

  • 1Sun W H, Zhang J P, Adivarahan V, Chitnis A, Shatalov M, Wu S, Mandavilli V, Yang J W and Khan M A 2004 Appl. Phys. Lett. 85 531
  • 2Adivarahan V, Wu S, Zhang J P, Chitnis A, Shatalov M, Mandavilli V, Gaska R and Khan M A 2004 Appl. Phys. Lett. 84 4762
  • 3Bilenko Y, Lunev A, Hu X H, Deng J Y, Katona T M, Zhang J P, Gaska R, Shur M S, Sun W H, Adivarahan V, Shatalov M and Khan A 2005 Jpn. Appl. Phys. 44 L98
  • 4Chang S J, Kuo C H, Su Y K, Wu L W, Sheu J K, Wen T C, Lai W C, Chen J R and Tsai J M 2002 IEEE J. Select. Top. Quantum Electorn. 8 744
  • 5Kamiyama S, Lwaya M, Takanami S, Terao S, Miyazaki A, Amano H, Akasaki I 2002 Phys. Status Solidi A 192 296
  • 6Nishida T, Makimoto T, Saito H and Ban T 2004 Appl. Phys. Lett. 84 1002
  • 7Kim K H, Fan Z Y, Khizar M, Nakarmi M L, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 4777
  • 8Mayes K, Yasan A, McClintock R, Shiell D, Darvish S R, Kung P and Razeghi M 2004 Appl. Phys. Lett. 84 1046
  • 9Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J and Walker D 2002 IEEE Electron. Device Lett. 23 535
  • 10Lee S W, Oh D C, Goto H, Ha J S, Lee H J, Hanada T, Cho M W, Yao T, Hong S K, Lee H Y, Cho S R, Choi J W, Cho J H i, Jang J H, Shin J E and Lee J S 2006 Appl. Phys. Lett. 89 132117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部