期刊文献+

Semiconductor-Optical-Amplifier-Based Inverted and Non-Inverted Wavelength Conversion at 40 Gb/s Using a Detuning Optical Bandpass Filter

Semiconductor-Optical-Amplifier-Based Inverted and Non-Inverted Wavelength Conversion at 40 Gb/s Using a Detuning Optical Bandpass Filter
下载PDF
导出
摘要 We experimentally demonstrate 40Gb/s semiconductor-optical-amplifier-based tunable wavelength conversion (WC) using a detuning optical bandpass filter. Both inverted and non-inverted WCs are obtained by shifting the filter central wavelength with respect to the probe wavelength. When the filter is red shifted by 0.4nm or blue shifted by 0.3nm, the WC is non-inverted. However, when the filter is blue shifted by 0.1 nm, the WC is inverted. It is experimentally demonstrated that the WC has a tunable range covering the C-band. We experimentally demonstrate 40Gb/s semiconductor-optical-amplifier-based tunable wavelength conversion (WC) using a detuning optical bandpass filter. Both inverted and non-inverted WCs are obtained by shifting the filter central wavelength with respect to the probe wavelength. When the filter is red shifted by 0.4nm or blue shifted by 0.3nm, the WC is non-inverted. However, when the filter is blue shifted by 0.1 nm, the WC is inverted. It is experimentally demonstrated that the WC has a tunable range covering the C-band.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第12期3450-3453,共4页 中国物理快报(英文版)
基金 Supported by the National High-Tech R&D Programme of China under Grant No 2006AA03Z0414, the National Natural Science Foundation of China under Grant No 60407001, the Science Fund for Distinguished Young Scholars of Hubei Province under Grant No 2006ABB017, and the New Century Excellent Talent Project of the Ministry of Education of China under Grant No NCET-04-0715.
关键词 THERMOELECTRIC half-Heusler compounds thermal conductivity thermoelectric, half-Heusler compounds, thermal conductivity
  • 相关文献

参考文献12

  • 1Hamie A, Sharaiha A, Guegan M and Le B J 2005 IEEE Photon. Technol. Lett. 17 1229
  • 2Xu F, Zhang X L, Liu H It, Liu D M and Huang D X 2006 Chin Phys. Lett. 23 355
  • 3Chen G X, Li W, Huang W P and Jian S S 2005 Chin. Phys. Lett. 22 110
  • 4Nakamura S and Tajima K 1997 Appl. Phys. Lett. 70 3498
  • 5Nielsen M L, Lavigne B and Dagens B 2003 Electron. Lett. 39 1334
  • 6Liu Y, Tangdiongga E, Li Z, deWaardt H and Koonen A M J 2006 OFC Anaheim PDP28
  • 7Tangdiongga E, Liu Y, deWaardt H, Khoe G D and Dorren H J S 2006 IEEE Photon. Technol. Lett. 18 908
  • 8Li Z, Liu Y, Zhang S, Ju H, de Waardt H, Khoe G D, Dorren H J S and Lenstra D 2005 Electron. Lett. 41 1397
  • 9Dong J J, Fu S N, Zhang X L, Shum P, Xu J and Huang D X 2007 Opt. Commun. 270 238
  • 10Chen Z X, Wu J, Xu K and Lin J T 2007 Microwave Opt. Technol. Lett. 49 547

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部