期刊文献+

APTE修饰钛氧膜并固定Ⅰ型胶原对内皮细胞生长的影响 被引量:2

Influence of APTE modification and binding type Ⅰ collagen to TiO2 film on the proliferation of endothelial cells
下载PDF
导出
摘要 在用磁控溅射合成具有一定特性的TiO2薄膜的基础上,使用一定浓度的NaOH溶液对其表面进行活化,并通过氨丙基三乙氧基硅烷(APTE)偶联固定I型胶原,通过傅立叶红外光谱(PTIR)、X射线光电子能谱(XPS)等检测手段进行材料处理前后表面性质表征.通过人脐静脉内皮细胞种植试验评价内皮细胞在样品表面的粘附和生长行为.研究结果表明:一定特性的TiO2薄膜经NaOH活化后,表面可产生活性的羟基基团;借助羟基,活化后的TiO2薄膜表面可以与硅烷偶联剂实现偶联固定,产生可以利用的活性氨基基团;进一步地,借助偶联剂的氨基基团,Ⅰ型胶原可以连接到TiO2薄膜表面形成涂层.体外内皮细胞培养实验表明,在处理后的TiO2薄膜表面,内皮细胞的粘附性和生长行为获得改善.因此,通过表面活化后涂覆APTE并固定Ⅰ型胶原修饰医用微弹簧圈,使其在体内更容易实现动脉瘤颈部的内皮化,以使动脉瘤与血液循环完全隔绝. The surface modification has become a focus in biomaterials research area. In this work, on the basis of our previous study, the TiO2 films were synthesized using Unbalance Magnetron Sputtering (UBMS) to improve its thrombus formation ability at a certain extent. The chosed TiO2 film was pretreated by NaOH solution for activity. Using bio-cherrfical modification method, type Ⅰ collagen was further immobilized on the TiO2 film surface by silane coupling reagent of aminopropyltriethoxysilane (APTE). X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectroscopy (PFIR) were used to investigate the characteristics of the bio-chemical modificated TiO2 film and the controlled TiO2 film. The biological behavior of cultured human umbilical vein endothelial cells (HUVECs) onto different films was investigated by in vitro HUVECs cultured experiment. The results showed that the bio-chemical modification can meet the biocompatibility requirement of TiO2 film for biomedical microcoil application to hemangioma treatment.
出处 《功能材料》 EI CAS CSCD 北大核心 2007年第A05期1868-1871,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(30670564):国家重点基础研究发展计划(973计划)资助项目(2005CB623904)
关键词 TIO2薄膜 APTE Ⅰ型胶原 内皮细胞 TiO2 film APTE type Ⅰ collagen endothelial cells
  • 相关文献

参考文献2

二级参考文献50

  • 1[1]Langer R,Vacanti JP.Tissue engineering[J].Science,1993,260:920-926.
  • 2[2]Saltzman WM.Cell interaction with polymers in principles of tissue engineering[A].In:Lanza R,Langer R.Principles of Tissue Engineering[C].Austin: Landes RG Company,1997.225-227.
  • 3[3]Winterman E,Mayer I,Blum J et al.Tissue engineering scaffold superstructures[J].Biomaterials,1996,17(2):83-91.
  • 4[4]Rouhi AM.Contemporary biomaterials[J].Chem Eng News,1999,73(3):51-59.
  • 5赤池敏宏.ハイプソツド材料(软组织)[J].金属,1998,(68):197-202.
  • 6[6]Hubbell JA.Biomaterials in tissue engineering[J].Bio Technology,1995,13:565-576.
  • 7[7]Okazaki J,Embery G,Hall RC.Adsorption of glycosaminoplycans onto hydroxyapatite using chromatography[J].Biomaterials,1999,20:309-314.
  • 8[8]Huang SL,Ou CF,Chao MS,et al.Structure protein adsorption relationships of polyurethanes[J].J Appl Poly Sci,1999,74(2):297-305.
  • 9[9]Jean LD,Aurora D,Yves JS,et al.Competitive adsorption of proteins: key of the relationship between substratum surface properties and adhesion of epithelial cells[J].Biomaterials,1999,20:547-559.
  • 10[10]Songlin W,Edna C,William DS,et al.Extracellular matrix protein-induced changes in human salivary epithelial cell organization and proliferation on a model biological substratum[J].Biomaterials,1999,20:1043-1049.

共引文献9

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部