期刊文献+

解非均质各向异性地下水渗流模型的改进型有限差分法 被引量:5

An Improving Finite Difference Method for Heterogeneous and Anisotropy Groundwater Flow Model
下载PDF
导出
摘要 常用的求解地下水渗流模型有限差分法,三角形单元Δikj内水文地质参数相同,以相同参数的三角形单元进行参数分区,这种方法,对某些情形可以达到解决地下水渗流场模拟和预报问题,但对非均质各向异性有一定的局限性。本文阐述了以三角形单元的棱边控制面积作为参数分区的最小单元的参数分区方法,建立了单元非等参有限差分方程,给出了实际应用例子。该方法可更准确刻画非均质各向异性问题,同时兼容以往的差分方程,可退化成一般有限差分格式。 In the old finite difference method for groundwater flow model, the hydrogeology parameters are same in a triangle unit, and parameter areas are divided according to the triangle units which have same parameters. This method can be used to solve the most simulation and forecast problems of groundwater flow models, but there are some limits for heterogeneous and anisotropy problems. The paper states a new parameter area dividing method base on the area which be controlled by the sides of the triangle unit, and sets up the finite difference equation under the new parameter area dividing method and non-same parameter in a triangle unit, then gives a applying example. The method is more accurate for describing or simulating heterogeneous and anisotropy problems, also compatible with the old finite method.
作者 易连兴
出处 《地质论评》 CAS CSCD 北大核心 2007年第6期839-843,共5页 Geological Review
基金 中国地质调查局地质调查项目(编号200310400043 西南岩溶地区地下水与环境地质调查综合研究)的成果
关键词 地下水系统 非均质各向异性 有限差分 单元非等参 groundwater system heterogeneous and anisotropy limit difference, non-same parameter in an unit
  • 相关文献

参考文献11

二级参考文献50

  • 1袁益让.油藏数值模拟中动边值问题的特征差分方法[J].中国科学(A辑),1994,24(10):1029-1036. 被引量:25
  • 2曾庆存 张学洪.球面上斜压原始方程组保持总有效能量守恒的差分格式[J].大气科学,1987,11(2):113-127.
  • 3[1]Jim Douglas Jr, Thomas F, Russellv. Numerical method for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM J Numer Anal, 1982;19(5):871-885
  • 4[2]Pironneau O.On the transport-diffusion algorithm and its applications to the Navier-Stokes equations[J].Numer Math,1982;38:309-332
  • 5[3]Jim Douglas Jr,Chieh-Sen Huang,Felipe Pereira.The modified method of characteristic with adjusted advection[J].Numer Math,1999;83:353-369
  • 6Arakawa A. Computational design for long-term numerical integrations of the equations of atmospheric motion. Compu Phys, 1966, (1): 119-143.
  • 7Lilly D K. On the computational stability of numerical solutions of time-dependent nonlinear geophysical fluid dynamics. Mon Wea Rev, 1965, 93(1): 11-26.
  • 8Jastram C, Tessmer E. Elastic modeling on a grid with vertically varying spaeing[J]. Geophys Prosp,1994,42:357-370.
  • 9Falk J, Tessmer E, Gajevski D. Tube wave modeling by the finite-differences method with varyinggrid spacing[J]. Pageoph, 1996,148:77-93.
  • 10Tessmer E, Kosloff D, Behle A. Elastic wave propagation simulation in the presence surface topography[J]. Geophys. J Internat, 1992,108:621-632.

共引文献25

同被引文献51

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部