摘要
The hot deformation behavior of a new Al-Cu-Li-Mg-Zr alloy was studied,and its microstructure and true stress were characterized as function of the deformation temperature and the strain rate using Gleeble-1500 thermal mechanical simulator. The results show that,with the increase of the strain rate from 0.001 s-1 to 10 s-1,the peak value of true stress is elevated at the same deformation temperature,and at the same strain rate the peak value of the true stress decreases with the increase of the deformation temperature from 360 ℃ to 520 ℃. Dynamic recrystallization easily occurs in the new Al-Cu-Li-Mg-Zr alloy under the lower strain rate and the higher deformation temperature,and dynamic recovery can usually be seen in this alloy under the higher strain rate of 10 s-1 and the lower deformation temperature.
The hot deformation behavior of a new AI-Cu-Li-Mg-Zr alloy was studied, and its microstructure and true stress were characterized as function of the deformation temperature and the strain rate using Gleeble-1500 thermal mechanical simulator. The results show that, with the increase of the strain rate from 0.001 s^-1 to 10 s^-1, the peak value of true stress is elevated at the same deformation temperature, and at the same strain rate the peak value of the true stress decreases with the increase of the deformation temperature from 360 ℃ to 520℃. Dynamic recrystallization easily occurs in the new Al-Cu-Li-Mg-Zr alloy under the lower strain rate and the higher deformation temperature, and dynamic recovery can usually be seen in this alloy under the higher strain rate of 10 s^-1 and the lower deformation temperature.
出处
《中国有色金属学会会刊:英文版》
CSCD
2007年第A01期271-275,共5页
Transactions of Nonferrous Metals Society of China
关键词
铝
锂
合金
热成型技术
压力
流体
Al-Li alloy
hot compression deformation
flow stress