摘要
Sn thin film on Cu foil substrate as the anode of lithium ion battery was prepared by direct current magnetron sputtering(DCMS). The surface morphology,composition and thickness and the electrochemical behaviors of the prepared Sn thin film were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),inductively coupled plasma atomic emission spectrometry(ICP),cyclic voltammetry(CV) and galvanostatic charge/ discharge(GC) measurements. It is found that the Sn film is consists of pure Sn with an average particle diameter of 100 nm. The thickness of the film is about 320 nm. The initial lithium insertion capacity of the Sn film is 771 mA·h/g. The reversible capacity of the film is 570 mA·h/g and kept at 270 mA·h/g after 20 cycles.
Sn thin film on Cu foil substrate as the anode of lithium ion battery was prepared by direct current magnetron sputtering(DCMS). The surface morphology, composition and thickness and the electrochemical behaviors of the prepared Sn thin film were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), inductively coupled plasma atomic emission spectrometry(ICP), cyclic voltammetry(CV) and galvanostatic charge/discharge(GC) measurements. It is found that the Sn film is consists of pure Sn with an average particle diameter of 100 nm. The thickness of the film is about 320 nm. The initial lithium insertion capacity of the Sn film is 771 mA.h/g. The reversible capacity of the film is 570 mA.h/g and kept at 270 mA.h/g after 20 cycles.
出处
《中国有色金属学会会刊:英文版》
CSCD
2007年第A02期907-910,共4页
Transactions of Nonferrous Metals Society of China
基金
Projects(50771046
20373016) supported by the National Natural Science Foundation of China
Project(05200534) supported by the Natural Science Foundation of Guangdong Province, China
Project(2006A10704003) supported by the Key Project of Guangdong Province, China
Project(2006Z3-D2031) supported by the Key Project of Guangzhou City, China