摘要
Spinel LiNi0.05Mn1.95O4 cathode material for lithium ion batteries was synthesized by solid-state reaction from coprecipitated Ni-Mn hydroxide precursors and characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and galvanostatic charge-discharge tests. It is found that LiNi0.05Mn1.95O4 powder has an ordered cubic spinel phase(space group Fd 3m) and exhibits superior rate capability. After 450 cycles,the LiNi0.05Mn1.95O4/carbonaceous mesophase spheres(CMS) Li-ion batteries can retain 96.0% and 93.3% capacity at 5C and 10C charge/discharge rate,respectively,compared with 85.3%(5C) and 80.5%(10C) retention for LiMn2O4 batteries. However,the initial discharge capacity of LiNi0.05Mn1.95O4/CMS batteries at 1C charge/discharge rate(96.20 mA·h/g) is slightly lower than that of the LiMn2O4 batteries(100.98 mA·h/g) due to the increased average oxidation state of Mn in LiNi0.05Mn1.95O4.
Spinel LiNi0.05Mn1.95O4 cathode material for lithium ion batteries was synthesized by solid-state reaction from coprecipitated Ni-Mn hydroxide precursors and characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and galvanostatic charge-discharge tests. It is found that LiNi0.05Mn1.95O4 powder has an ordered cubic spinel phase (space group Fd3m) and exhibits superior rate capability. After 450 cycles, the LiNi0.05Mn1.95O4/carbonaceous mesophase spheres(CMS) Li-ion batteries can retain 96.0% and 93.3% capacity at 5C and 10C charge/discharge rate, respectively, compared with 85.3% (5C) and 80.5% (10C) retention for LiMn204 batteries. However, the initial discharge capacity of LiNi0.05Mn1.95O4/CMS batteries at 1C charge/discharge rate (96.20 mA.h/g) is slightly lower than that of the LiMn2O4 batteries (100.98 mA.h/g) due to the increased average oxidation state of Mn inLiNi0.05Mn1.95O4.
出处
《中国有色金属学会会刊:英文版》
CSCD
2007年第A02期937-940,共4页
Transactions of Nonferrous Metals Society of China