摘要
应用原子参数(阴阳离子半径,价电子数,表征金属元素价电子云密度的参数)-人工神经网络方法研究了熔盐-液体金属系的互溶度,会溶温度及偏晶点成分的规律.研究结果表明,金属元素的愈大,熔盐在液体金属中溶解度愈小训练后的神经网络可以预报熔盐-液体金属系的会溶温度和偏晶点成分.
Atomic parameter-artificial neural network method has been applied to study the regularities of the mutual solubility, the consolute temperatures, and the composition of monotectic points of molten salt-liquid metal systems. It has been found that larger melt's is correspond to lower mutual solubility. Trained artifical neural can be used to predict the consolute tempertures and the composition of monotectic points of molten salt-liquid metal systems. The error of the results of computerized prediction is rather small.
出处
《金属学报》
SCIE
EI
CAS
CSCD
北大核心
1997年第9期939-942,共4页
Acta Metallurgica Sinica
基金
国家自然科学基金!09415307
关键词
熔盐
液体金属
溶解度
互溶度
留一法
molten salt-liquid metal system, solubility, atomic parameter-artificial neuraI network method