期刊文献+

基于光流和水平集模型的运动目标自动跟踪方法 被引量:3

Approach on Moving Target Automatic Tracking Based on Optical Flow and Level Set
下载PDF
导出
摘要 在分析直升机在天空飞行序列图像特点的基础上,提出了基于光流和水平集模型的运动目标自动跟踪方法。该方法通过对图像进行高通滤波预处理,获得运动目标的特征图像,用特征图像来求解运动目标的光流,用光流对运动区域进行分割,获得运动区域的中心和半径,以该中心和半径的圆作为初始水平集曲线,以光流速度作为曲线演化的外力修改Chan and Vese模型,用改进后的模型对图像进行分割。实验证明,用本文方法能够快速、准确地自动跟踪运动目标。 Through the analysis of the characteristics of the sequence image about the flying helicopter in the sky, an automatic tracking approach on the moving target is proposed based on the optical flow and level set model. The character images are obtained through the image preprocessing by the high pass filter. The optical flow of the moving target is solved by using the character image. The moving area is segmented with the optical flow. Then the center and the radius of the moving area can be obtained. The circularity with the center and the radius is taken as the initial curve of level set. Chan and Vese model is modified by outside force of curve evolution which is obtained by the speed of the optical flow. The images are segmented by using the modified Chan and Vese model. It is demonstrated that the moving target can be tracked automatically, rapidly, accurately with the method.
作者 段先华
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2007年第5期59-63,共5页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金 国家自然科学资助项目(60572034) 香港特区政府研究资助局资助项目(CUHK/4180/01E CUHK/1/00C)
关键词 运动目标自动跟踪 序列图像 光流 分割 Chan和Vese模型 moving target automatic tracking sequence images optical flow segmentation Chan and Vesemethod
  • 相关文献

参考文献12

  • 1[1]RUSSO P,MARANDEY V,BUI T,et al.Optical flow techniquesfor moving target detection[C]//SPIE Proceedings,1990,1383:62-27.
  • 2[2]PARAGIOS N,DERICHE R.Geodesic active contours and level sets for the detection and tracking of moving objects[J].IEEE Trans.Pattern Anal.Machine Intell.,2000,22(3):266-280.
  • 3屈有山,田维坚,李英才.基于并行隔帧差分光流场与灰度分析综合算法的运动目标检测[J].光子学报,2003,32(2):182-186. 被引量:27
  • 4[4]CHAN T F,VESE L A.Image segmentation using level sets and the piecewise constant Mumford-Shah model[R].Technical report,UCLA Dept of Math.,CAM 00-14,2000.
  • 5王洪群,彭嘉雄,李玲玲.基于视觉的无人机着陆时机场标记的检测与识别[J].模式识别与人工智能,2006,19(6):764-770. 被引量:2
  • 6[6]OSHER S,SETHIAN J A.Fronts propagating with curvature dependent speed:algorithms based on hamilton-jacobi formulation[J].Journal of Computational Physics,1988,79(1):12-49.
  • 7[7]CHAN T,WONG C K.Total variation blind deconvolution[J].IEEE Transactions on Image Processing.1998,7(3):370-375.
  • 8[8]SOCHEN N,KIMMEL R,MALLADI R.A general frameworkn for low level vision[J].IEEE Transactions on Image Processing.1998,7(3):310-318.
  • 9[9]CHAN T F,VESE L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 10[10]Guillermo Sapiro.Geometric Partial Differential Equations and Image Analysis[M].Cambridge University Press,2001.

二级参考文献11

  • 1[1]Horn B K, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17(1): 185~203
  • 2[2]Girosi F, Verri A, Torre V. Constraints for the computation of optical flow. Proceedings of the IEEE Workshop on Visual Motion, 1989. 116~124
  • 3[3]Russo P, Marandey V, Bui T,et al. Optical Flow Techniques for Moving Target Detection. SPIE Proceedings, 1990,1383: 62~71
  • 4[4]Black M J, Jepson A D. Estimation optical flow in segmented images using variable-order parametric models with local deformations. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18(10): 972~986
  • 5[5]Hong E P, Spann M. Robust optical flow computation based on least-median-of-square regression. International Journal of Computer Vision, 1999,31(1): 51~826
  • 6Hespanha J M, Yakimenko O A, Kaminer I L, etal. Linear Parametrically Varying Systems with Brief Instabilities: An Application to Vision/Inertial Navigation. IEEE Trans on Aerospace and Electronic Systems, 2004, 40(3):889-902
  • 7Frezza R, Altafini C. Autonomous Landing by Computer Vision: An Application of Path Following in SE(3) // Proc of the 39th IEEE Conference on Decision and Control. Sydney, Australia, 2000, Ⅲ: 2527-2532
  • 8Chatterji G B, Menbn P K, Sridhar B. GPS/Machine Vision Navigation System for Aircraft. IEEE Trans on Aerospace and Electronic Systems, 1997, 33(3):1012-1025
  • 9Dickmanns E D, Schell F R. Autonomous Landing of Airplanes by Dynamic Machine Vision // Proc of the IEEE Workshop on Applications of Computer Vision. Palm Springs, USA, 1992:172 - 179
  • 10Duda R O, Hart P E. Pattern Classification and Scene Analysis.New York, USA: John Wiley Sons, 1973

共引文献26

同被引文献18

  • 1杨国亮,王志良,牟世堂,解仑,刘冀伟.一种改进的光流算法[J].计算机工程,2006,32(15):187-188. 被引量:27
  • 2李宏,杨廷梧,任朴舟,李朝晖.基于光流场技术的复杂背景下运动目标跟踪[J].光电工程,2006,33(10):13-17. 被引量:16
  • 3万文静.基于光流的图像目标跟踪方法研究.西安:西北工业大学,2006.
  • 4Adiv G.Determining three-dimension motion and structure from optical flow generated by several moving objects.IEEEE Transaction on Pattern Analysis and Machine Intelligence,1985;7(4):384-401.
  • 5Salzmann M, Hartley, R, Fua P. Convex optimization fordeformable surface 3-d tracking [ C ]// Proceedings of IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: [ s. n. ] ,2007:69 -77.
  • 6Shen S, Zheng Y, Liu Y. Deformable surface stereo tracking-by-detection using second order cone program- ming [ C ]//Proceedings of 19th International Conference on Pattern Recognition ( ICPR 2008 ). Tampa, FL, USA : [s.n.], 2008: 1-4.
  • 7Sudhir G, Banerjee S, Biswas K, et al. Cooperative inte- gration of stereopsis and optic flow computation [ J ]. Jour- nal of the Optical Society of America, 1995, 12 ( 12 ), 2564 - 2572.
  • 8Huguet F, Devemay F. A variational method for scene flow estimation from stereo sequences [ C ]// Eleventh IEEE International Conference on Computer Vision (ICCV 2007). Rio de Janeiro, Brazil: [ s. n. ] ,2007:617 - 619.
  • 9Isard M, MacComlick J. Dense motion and disparity esti- mation via loopy belief propagation [ J ]. Computer Vision- ACCV, 2006:32-41.
  • 10Stoyanov D, Mylonas G, Deligianni F, Darzi A, et al. Softtissue motion tracking and structure estimation for ro- botic assisted mis procedures [ J ]. Lecture Notes in Com- puter Science ,2006:3750 - 3758.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部