期刊文献+

数据库和数据流频繁项集挖掘算法研究

Studying about Frequent Itemsets Mining Algorithm Based on Database and Data Stream
下载PDF
导出
摘要 Apriori算法是关联规则挖掘中的经典算法。在关联规则挖掘中,频繁项集是挖掘核心。针对Apriori算法的瓶颈和数据流频繁项集挖掘的特点,研究人员提出了许多改进算法。对改进算法的特点进行归纳、分析和研究有利于从不同角度、采用不同的技术改善算法的性能,提高数据挖掘效率,有利于数据挖掘的进一步研究和应用。 Apriori algorithm is a classical algorithm of association rule mining. Frequent item sets is the core in algorithm of Association rule mining. To solve bottleneck of the apriori algorithm and characteristic of data stream frequent itemsets mining, a lot of improved algorithms are put forward by researcher, concludeing,analyzing and studying about characleristic of improverd algorithm that is propitious to improve ability of algorithm and to advance efficiency of data mining by used another point of view and technic, To more study and application of data mining it is propitious.
作者 孙莉
出处 《现代机械》 2007年第5期54-57,共4页 Modern Machinery
基金 国家自然科学基金项目资助(60673138)
关键词 数据挖掘 关联规则 数据流 频繁项集 APRIORI算法 data mining association rule data stream frequent item sets apriori algorithm
  • 相关文献

参考文献19

  • 1Agrawal R and Seikant R.Fast Algorithms for Mining Association Rules[C].In:Proc of 21th Int.Conf.on Very Large Databases(VLDB),Santiago.Chile,1994,487-499
  • 2Han J.Pei J.Yin Y.Mining Frequent Patterns Without Candidate Generation.In SIGMOD2000,Dallas,TX,May 2000
  • 3范明,王秉政.一种直接在Trans-树中挖掘频繁模式的新算法[J].计算机科学,2003,30(8):117-120. 被引量:10
  • 4Park J S,Chen M S,Yu P S.An Efficient Hash Based Algorithm for Mining Association Rules[C].In:Proc of 1995 ACM-SIMOD Int Conf on Management of Data,San Jose,CA.1995,175-186
  • 5Toivonen H.Sampling Large Databases for Association Rules.In:Proc.1996,Intl.Conf.Very Large Databases(VLDB96),Bombay,India,Sept.1996
  • 6Brin S,et al.Dynamic Item Sets Counting and Implication Rules for Market Basket Analysis.In SIGMOD97,Tuscson,AZ,May 1997
  • 7刘以安,刘强,邹晓华,王士同.基于向量内积的关联规则挖掘算法研究[J].计算机工程与应用,2006,42(21):172-174. 被引量:15
  • 8钱少华,蔡勇,钱雪忠.基于数组的Apriori算法的改进[J].计算机应用与软件,2006,23(2):111-113. 被引量:16
  • 9Savasere A,Omiecinsky E,Navathe S.An Efficient Algorithm for Association Rules in Large Databases[C].In:21st Intl.Conf.on Very Large Databases(VLDB).Zurich,Switzerland.Sept.1995
  • 10谈克林,孙志挥.一种FP树的并行挖掘算法[J].计算机工程与应用,2006,42(13):155-157. 被引量:10

二级参考文献69

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2皮德常,秦小麟,王宁生.基于动态剪枝的关联规则挖掘算法[J].小型微型计算机系统,2004,25(10):1850-1852. 被引量:16
  • 3龙银香.移动计算环境下的数据挖掘研究[J].微计算机信息,2005,21(07X):35-38. 被引量:17
  • 4David Hand,Heikki Mannila,Padhraic.Principles of Data Mining ISBN0-262-08290-X,2001.
  • 5Richard J.Roiger,Michael W.Geatz 著,翁敬弄译.Data Mining A Tutorial-Based Primer,北京:清华大学出版社,2003.
  • 6Agrawal R, Srikant R. Fast algorithms for Mining association rules. In:Proc 1994 Int'l Conf on Very Large Data Bases,Sept.1994- 487-499.
  • 7Park J S,Chen M S. Yu P S. An effective hash-based algorithm for mining association rules. In: Proc 1995 ACM-SIGMOD Int'l Conf on Management of Data, May 1995. 175-186.
  • 8Brin S,Motwani R ,Silverstein C. Beyond market basket: Generalizing association rules to correlations. In: Proc 1997 ACM-SIGMOD Int'l Conf on Management of Data, May 1997. 265-276.
  • 9Agrawal R,Srikant R. Mining sequential patterns, In ICDE'95, pages 3-14.
  • 10Dong G, Li J. Efficient mining of emerging patterns : Discovering trends and differences. In: Proc of the fifth ACM SIGKDD Intl Conf on Knowledge Discovery and Data Mining, Aug.1999. 43-52.

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部