期刊文献+

流固耦合模型在定量预测油水井出砂过程中的应用 被引量:10

A fluid-solid coupling model and its application in quantitative sand production prediction of oil and water wells
下载PDF
导出
摘要 在综合考虑流体渗流、储集层变形或破坏等因素的基础上,建立了流固耦合形式的出砂定量预测模型。提出了2类出砂机理:流体渗流剥蚀作用下的细砂产出和储集层结构破坏情况下的粗砂产出,并采用Drucker-Prager准则研究了出砂过程中的砂岩储集层骨架应力和变形。有限元法数值模拟结果表明:在整个出砂过程中,地层渗透率的变化与生产压差、储集层物性密切相关。在相对平衡的地层压力条件下,由于剥蚀或储集层骨架破坏,地层渗透率可以增加30%;过高的生产压差可能造成井眼局部储集层压实,渗透率下降幅度可达50%。因此,保持适当的地层压力是控制渗透率下降进而保持产能的关键。 With fluid percolation, reservoir deformation or damage and other factors under consideration, a fluid-solid coupling model for predicting sand production volume is generated. Two types of sand production mechanisms are proposed: producing fine sands under hydro-dynamical erosion and producing coarse sands when reservoir structures are destructed. The matrix stress and the deformation of sandstone reservoirs in sand production are studied using the Drucker- Prager criterion. The results of finite element numerical simulation indicate that the change of formation permeability correlates closely with producing pressure drop and reservoir properties in the whole sand production. Under relative balanced pressure, because of the erosion of reservoirs and the destruction of reservoir skeleton structures, the formation permeability can increase by 30%; while under over high production pressure drop, because of the possible reservoir compaction near well-bores, the formation permeability can decline by 50%. A balanced pressure depletion strategy is the key to controlling permeability declining and retaining production.
出处 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2007年第6期750-754,共5页 Petroleum Exploration and Development
基金 石油科技中青年创新基金与Schlumberger(北京)技术公司资助项目(w001703)
关键词 油水井出砂 流固耦合效应 出砂定量预测模型 有限元数值模拟 sand production of oil and water wells fluid-solid coupling effect quantitative prediction model of sand production finite element numerical simulation
  • 相关文献

参考文献14

  • 1Dusseault M B, Santarelli F J. A conceptual model for large scale solids production[A]. Proceedings of the International Symposium on Rock at Great Depth, Rotterdam[C]. Rotterdam: Balkema, 1989. 789-797.
  • 2Monta N, Boyd P A. Typical sand production problem: case studies and strategies for sand control[A]. SPE 22739, 1991.
  • 3尤启东,陆先亮,栾志安.疏松砂岩中微粒迁移问题的研究[J].石油勘探与开发,2004,31(6):104-107. 被引量:27
  • 4Wang Y, Xue S F. Simulating cold production by a coupled reservoir geomechanics model with sand erosion[J]. Journal of Canadian Petroleum Technology, 2004, 43 (5):41-48.
  • 5卢宝荣,蔡明俊,刘树明,张林河,李彪.羊三木油田馆一油组油层出砂影响因素探讨[J].石油勘探与开发,2004,31(3):146-147. 被引量:14
  • 6Papamichos E, Stavrogoulou M. An erosion-mechanical model for sand production rate prediction[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1998, 35(5):531-532.
  • 7Bear J, Tsang C F, Marsily G de. Flow and contaminant transport in fractured roek[M]. Canada: Academic Press, 1993. 193- 222.
  • 8Tortike S W. Numerical simulation of thermal, multiphase fluid flow in an elastoplastic deforming oil reservoir[D]. Edmonton:University of Alberta, 1991.
  • 9Papamichm E, Malmanger E M. A sand erosion model for volumetric sand predictions in a North Sea reservoir [J]. SPE Reservoir Evaluation & Engineering, Feb. , 2001: 44-50.
  • 10Xue S F, Yuan Y G. Sanding mechanism and permeability change [J]. Journal of Canadian Petroleum Technology, 2007, 46(4): 33-39.

二级参考文献41

共引文献142

同被引文献66

引证文献10

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部