期刊文献+

一类次二次受迫的Lagrange系统的周期解

Periodic Solutions for a Class of Subquadratic Forced Lagrangian Systems
下载PDF
导出
摘要 本文用变分法证明了一类次二次受迫的Lagrange系统周期解的存在性. In this paper, we mainly study the existence of periodic solutions for a class of forced subquadratic Lagrangian systems by making use of variational method.
出处 《中央民族大学学报(自然科学版)》 2007年第1期52-56,73,共6页 Journal of Minzu University of China(Natural Sciences Edition)
关键词 LAGRANGE系统 周期解 变分法 Forced Lagrangian systems variational method periodic solutions
  • 相关文献

参考文献8

  • 1[1]RABINOWITZ P H.Critical point theorems for indefinite functionals[J].Inventiones Math,1979,52.
  • 2[2]EKELAND I.Convexity Methods in Hamiltonian Mechanics[M].N.Y.:Springer-Verlag,1990.
  • 3[3]MAWHIN,WILLEM M.Critical Point Theory and Hamiltonian Systems[M].N.Y.Springer -Verlag,1988.
  • 4[4]CAPOZZI A.On Subquadratic Hamiltonian Systems[J].Nonlinear Analysis,Theory,Methods & Applications,1984,8(8):553-562.
  • 5[5]CAPOZZI A,FORTUNATO D,SALVATORE A.Periodic solutions of Lagrangian Systems with a bounded potential[J].J.Math.Anal.and Appl.,1987,124(2):482-494.
  • 6[6]ELVIRA MIRENGHI.Maria Tucci,Existence of T-Periodic Solutions for a Class of Lagrangian Systems[J].Rend.Sem.Univ.Padova,1987,124(2):482-494.
  • 7[7]BENCI V,CAPOZZI A,FORTUNATO D.Periodic solutions of Hamiltonian systems with a prescribed[D].Period University of Wisconsin,Mathematics Research Center,Technical Report,1983,No.2508.
  • 8[8]RABINOWITZ P H.Minimax methods in critical point theory with applications differential equations[J].C.B.M.S.Regional Conf.Series in Math.,AMS,1986(65).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部