一类次二次受迫的Lagrange系统的周期解
Periodic Solutions for a Class of Subquadratic Forced Lagrangian Systems
摘要
本文用变分法证明了一类次二次受迫的Lagrange系统周期解的存在性.
In this paper, we mainly study the existence of periodic solutions for a class of forced subquadratic Lagrangian systems by making use of variational method.
出处
《中央民族大学学报(自然科学版)》
2007年第1期52-56,73,共6页
Journal of Minzu University of China(Natural Sciences Edition)
关键词
LAGRANGE系统
周期解
变分法
Forced Lagrangian systems
variational method
periodic solutions
参考文献8
-
1[1]RABINOWITZ P H.Critical point theorems for indefinite functionals[J].Inventiones Math,1979,52.
-
2[2]EKELAND I.Convexity Methods in Hamiltonian Mechanics[M].N.Y.:Springer-Verlag,1990.
-
3[3]MAWHIN,WILLEM M.Critical Point Theory and Hamiltonian Systems[M].N.Y.Springer -Verlag,1988.
-
4[4]CAPOZZI A.On Subquadratic Hamiltonian Systems[J].Nonlinear Analysis,Theory,Methods & Applications,1984,8(8):553-562.
-
5[5]CAPOZZI A,FORTUNATO D,SALVATORE A.Periodic solutions of Lagrangian Systems with a bounded potential[J].J.Math.Anal.and Appl.,1987,124(2):482-494.
-
6[6]ELVIRA MIRENGHI.Maria Tucci,Existence of T-Periodic Solutions for a Class of Lagrangian Systems[J].Rend.Sem.Univ.Padova,1987,124(2):482-494.
-
7[7]BENCI V,CAPOZZI A,FORTUNATO D.Periodic solutions of Hamiltonian systems with a prescribed[D].Period University of Wisconsin,Mathematics Research Center,Technical Report,1983,No.2508.
-
8[8]RABINOWITZ P H.Minimax methods in critical point theory with applications differential equations[J].C.B.M.S.Regional Conf.Series in Math.,AMS,1986(65).