摘要
本文讨论了一类解常微分方程初值问题的块隐式混合单步并行算法,这种算法的块数为K,精度阶为2d+2,可在S台处理机上进行并行计算,其中K=S·d.本文讨论了方法的一般性质,给出了方法的稳定性定理,最后给出了一个数值例子.
In this paper, a class of K-block implicit hybrid methods for the numerical integration of initial value problems in ordinary differential equations are derived. By the methods, a block of K new values can be obtained simultaneously on s-processors. It is shown that the method of order 2d + 2 exists, where k = s. d. The theorems of convergence and numerical stability are presented, and one numerical experiment is also given.
出处
《应用数学》
CSCD
1997年第3期72-77,共6页
Mathematica Applicata
关键词
常微分方程
块方法
并行计算
初值问题
Ordinary differential equation
Block method
Parallel algorithm