摘要
设整数a,b1,b2满足a>1,(a,b1)=(a,b2)=1.证明了几乎所有适合条件m≡b1+b2(moda)的偶数m可以表示为p1+p2的形式,其中pi为素数,并且pi≡bi(moda),i=1。
Let a,b 1,b 2 be integers, a>1,(a,b 1)=(a,b 2)= 1. prove that almost all even numbers m satisfying m≡b 1+b 2 (mod a ) can be represented as p 1+p 2 ,where p i is a prime and p i≡b i (mod a),i=1,2.