期刊文献+

扁拱结构的非线性振动分析 被引量:1

Analysis on Nonlinear Vibration of Shallow Arch Structure
下载PDF
导出
摘要 建立了扁拱结构的非线性振动方程,并应用平均法求其一阶近似解;然后应用李雅普诺夫一次近似稳定理论研究了扁拱结构主参数共振时的动力稳定性;讨论了用平均法求解同时具有二次和三次非线性动力系统的局限性.研究表明:当扁拱结构系统非线性呈"渐软"弹簧特性时,二次非线性项在平均法求解过程不起作用,这时用平均法难以准确近似系统的真实响应,其方法是失效的;当扁拱结构系统非线性呈"渐硬"弹簧特性时,平均法求得的近似解较为准确,在此情况下平均法可以作为扁拱动力学特性的求解方法. In this paper, nonlinear vibrations of a shallow arch subjected to action of a load distributed in the form of sinusoid function is investigated. A nonlinear vibration equation of a shallow arch structure is established first and the approximate solution of the equation is given with an averaging method. Then the analysis of stabiiity of a shallow arch structure is done with Lyapunov' s f'~t-order approximate stability theory. Finally, the limitation of finding the solution of quadratic and cubic nonlinear dynamic systems with an averaging method is discussed. It is found that the square nonlinear term has no effect for finding the approximate solution by an averaging method in the soft-spring system. But the approximate solution by an averaging method is accurate in the hard-spring system, and therefore, an averaging method can be used as a solving method for dynamic characteristics of a shallow arch.
出处 《重庆工学院学报》 2007年第19期42-46,141,共6页 Journal of Chongqing Institute of Technology
基金 国家自然科学基金资助项目(10472097) 四川省应用基础项目(05JY029-006-3) 重庆交通大学桥梁结构工程重点实验室开放基金资助项目(2006-1)
关键词 扁拱 平均法 非线性振动 shallow arch averaging method nonlinear vibration
  • 相关文献

参考文献4

  • 1Yananoto T, Yasuda, K Nakamura T. Subcombinatlon tones in a nonlinear vibration analysis[J]. Bulletin of the Japan Society of Mechanical Engineers, 1974,17:1426 - 1437.
  • 2van Dooren R. Differential tones in a damped mechanical system with quadratic and cubic non-linearities[J]. Int.J.Non-Linear Mechanics, 1973,8:575 - 583.
  • 3Nayfeh AH, Mook DT. Nonlinear Oscillations[M] .New York: John Wiley & Sons, 1979.
  • 4朱文骅 张益松.正弦型扁拱的动力稳定特性.力学季刊,1988,9(4):73-79.

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部