期刊文献+

水平集方法及其在柔顺机构拓扑优化中的应用(英文) 被引量:3

Level Set Method and Its Applications to Topology Optimization of Compliant Mechanisms
下载PDF
导出
摘要 由于具有跟踪拓扑结构变化、优化边界清晰光滑等优点,水平集方法作为一种新颖的机构拓扑优化方法近来受到了重视.文中首先讨论了水平集方法中Hamilton-Jacobi方程的求解、水平集函数的重新初始化、速度场扩展等出现的问题.在此基础上,给出了应用逆风差分格式求解Hamilton-Jacobi方程的数值方法,并采用改进的符号函数有效解决了数值的不稳定问题,提出的快速扫描法可以对速度场进行有效扩展.最后,建立了基于水平集方法的柔顺机构拓扑优化模型,利用水平集法对反位移柔顺机构进行了拓扑优化设计. The level set method has recently been proposed and studied as a novel structural topology optimization method, which is flexible in handling complex topological changes and concise in describing the boundary shape of the structure. In this paper, first, some numerical issues are discussed, such as the solution of Hamil- ton-Jacobi equations, the re-initialization of the level set function and the extension of velocity fields. Then, several robust and effective numerical technologies, which are important to the implementation of the level set method, are proposed. For example, the upwind difference scheme is used to solve Hamilton-Jacobi equations, the signature function is modified to ensure the numerical stability, and the fast scanning method is developed to construct extension velocities. Moreover, based on the level set method, a topology optimization model for compliant mechanisms is presented. Finally, the proposed level set method is illustrated by the topology optimization of a displacement inverter.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期26-36,共11页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50775073) 粤港关键领域重点突破项目(东莞专项20061682) 广东省,教育部产学研项目(2006D90304001) 广东省自然科学基金资助项目(05006494)~~
关键词 水平集方法 柔顺机构 拓扑优化 level set method compliant mechanism topology optimization
  • 相关文献

参考文献40

  • 1Howell L L.Compliant mechanisms[M].New York:McGraw-Hill,2001.
  • 2于靖军,宗光华,毕树生.全柔性机构与MEMS[J].光学精密工程,2001,9(1):1-5. 被引量:78
  • 3吴鹰飞,周兆英.柔性铰链的应用[J].中国机械工程,2002,13(18):1615-1618. 被引量:57
  • 4Ananthasuresh G K,Kota S.Designing compliant mechanisms[J].Mechanical Engineering,1995,117(11):93-96.
  • 5张宪民.柔顺机构拓扑优化设计[J].机械工程学报,2003,39(11):47-51. 被引量:58
  • 6Bendsoe M P,Kikuchi N.Generating optimal topologies in structural design using a homogenizaton method[J].Computer Methods in Applied Mechanics and Engineering,1998,71:197-224.
  • 7Bendsoe M P.Optimization of structural topology,shape and material[M].Berlin:Spring-Verlag,1997.
  • 8Nishiwaki S,Frecker M I,Min S,et al.Topology optimization of compliant mechanisms using homogenization method[J].International Journal for Numerical Method Engineering,1998,42:535-559.
  • 9Frecker M I,Canfield S.Design of efficient compliant mechanisms from ground structure based optimal topologies[C] // Proceedings of the 2000 ASME Design Engineering Technical Conferences,Baltimore,Maryland:ASME,2000.
  • 10Frecker M I,Kikuchi N,Kota S.Topology optimization of compliant mechanisms with multiple outputs[J].Structural Optimization,1999,17:269-278.

二级参考文献27

  • 1[1]Bendsoe M P, Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer methods in Applied mechanics and Engineering, 1988, 71:197~224
  • 2[2]Nishiwaki S, Frecker M I, Min S, et al. Topology optimization of compliant mechanisms using homogenization method. International Journal for Numerical Method Engineering, 1998, 42:535~559
  • 3[3]Yin L, Ananthasuresh G K. A novel formulation for the design of distributed compliant mechanisms. In:Proceedings of the 2002 ASME Design Engineering Technical Conferences, 2002, DETC2002/MECH-34213
  • 4[4]Nishiwaki S, Min S, Yoo J, et al. Optimal structural design considering flexibility. International Journal for Numerical Method Engineering, 2001, 190:4 457~4 504
  • 5[5]Frecker M I, Ananthasuresh G K, Nishiwaki S, et al. Topological synthesis of compliant mechanisms using multi-criteria optimization. Transactions of the ASME, Journal of Mechanical Design, 1997, 119(2):238~245
  • 6[6]Frecker M I, Kota S, Kikuchi N. Use of penalty function in topological synthesis and optimization of strain energy density of compliant mechanisms. In:Proceedings of the 1997 ASME Design Engineering Technical Conferences, 1997, DETC97/ DAC-3760
  • 7[7]Frecker M I, Kikuchi N, Kota S. Topology optimization of compliant mechanisms with multiple outputs. Structural Optimization, 1999, 17:269~278
  • 8[8]Frecker M I, Canfield S. Design of efficient compliant mechanisms from ground structure based optimal topologies. In:Proceedings of the 2000 ASME Design Engineering Technical Conferences, 2000, DETC2000/ MECH-14142
  • 9[9]Hetrick J A, Kota S. Topological and Geometric Synthesis of compliant mechanisms. In:Proceedings of the 2000 ASME Design Engineering Technical Conferences, 2000, DETC2000/ MECH-14140
  • 10[10]Saxena A. On mutiple-material optimal compliant topologies: discrete variable parameterization using genetic algorithm. In:Proceedings of the 2002 ASME Design Engineering Technical Conferences, 2002, DETC2002 /MECH-34209

共引文献192

同被引文献37

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部