期刊文献+

联盟运输调度问题的粒子群算法研究* 被引量:1

Research on Particle Swarm Optimization for Allied Vehicle Routing Problems
下载PDF
导出
摘要 联盟运输调度问题是在基本运输调度问题基础上所发展起来的、具有重要实用价值的一类组合优化难题。粒子群算法(PSO)是一种新兴的基于群智能的演化计算技术,该算法与传统方法相比有着较高的收敛速度和计算精度,可以在解空间内高效地寻找到全局最优解。将其应用于联盟运输调度问题,并针对联盟运输调度问题中最优解的分布特点,对标准粒子群算法进行了改进,克服了标准粒子群算法收敛速度过快且易收敛于局部最优的缺点。对比实验结果表明,改进后的粒子群算法可以快速、有效求得最优解。 The allied vehicle routing problem (AVRP) is a kind of combinatorial optimization problem with important practical value, which developed from the basic vehicle routing problem (VRP).Particle swarm optimization (PSO) is a newly rising evolution- ary computation technique based on swarm intelligence,PSO possesses the better convergent speed and computational precision compares with the traditional algorithms,it can effectively search out the global optimal solution in the space of solution.The standard PSO is improved in this paper to solve the AVRP by contraposed the distribution attribute of AVRP's optimal solutions,which overcomes the shortcomings of the standard PSO quickly and easily constringe local optimal solu- tion.The experimental results of comparison indicate that the improved algorithm of PSO can quickly and effectively get optimal solution to the allied vehicle routing problems.
出处 《工业控制计算机》 2007年第11期42-45,共4页 Industrial Control Computer
基金 国家自然科学基金(60374062) 广东省科技计划项目(2004B10101038) 广东省自然科学基金项目(04009488)
关键词 联盟运输调度问题 粒子群算法 智能算法 altied vehicle routing problems,particle swarm optimization,intelligent algorithms
  • 相关文献

参考文献11

  • 1蔡延光,师凯.带软时间窗的联盟运输调度问题研究[J].计算机集成制造系统,2006,12(11):1903-1908. 被引量:16
  • 2师凯,蔡延光.联盟运输调度问题模型结构与算法研究[J].计算机技术与发展,2007,17(1):56-59. 被引量:14
  • 3Kennedy J,Eberhart R C.Particle swarm optimization[A].Proceedings of the 1995 IEEE International Conference on Neural Network[C], Perth, Australia,1995.
  • 4Eberhart R C,Shi Y.Particle swarm optimization:Developments, applications and resources [C].Proc.Congress on Evolutionary Computation 2001.Piscataway, NJ:IEEE Press,2001:81-86
  • 5Maurice C,Kennedy J.The particle swarm-explosion,stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58- 73
  • 6Kennedy J.The particle swarm:Social adaptation of knowledge [A].Proc IEEE International Conference on Evolutionary Computation [C], Indianapolis,1997:303-308
  • 7Salmen A,Ahmad I,AI-Madani S.Particle swarm optimization for task assignment problem [J].Microprocessors and Microsystems,2002,26:363-371
  • 8王大均,李华平,等.混沌粒子群混合优化算法[J/OL].中国科技论文在线http://www.paper.edu.cn/paper.php?serial_number=200702-141.2007-02-12/2007-04-01]
  • 9李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,19(6):596-600. 被引量:52
  • 10李军,谢秉磊,郭耀煌.非满载车辆调度问题的遗传算法[J].系统工程理论方法应用,2000,9(3):235-239. 被引量:110

二级参考文献49

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:162
  • 2李宁,邹彤,孙德宝.车辆路径问题的粒子群算法研究[J].系统工程学报,2004,19(6):596-600. 被引量:52
  • 3Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperative agents [J]. IEEE Transactions on Systems,Man, and Cybernetics, 1996,26( 1 ) :29-41.
  • 4Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem [ J]. 1EEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) :53-66.
  • 5Clarke G, Wright J. Scheduling of vehicles from a central depot to number of delivery points [ J ]. Operations Research, 1964, 12(4) :12 - 18.
  • 6Gillitt B E, Miller L R. A heuristic algorithm for the vehicle dispate h problem [ J ]. Operations Research, 1974,22 ( 2 ) : 340 - 349.
  • 7Bramel J, Simchi-Levi D. A location based heuristic for general routing problems [ J]. Operations Research, 1995,43 (4) :649-660.
  • 8Fisher M L, Jaikumar R. A generalized assignment heuristic for vehicle routing [J]. Networks, 1981,11 (2) :109 - 124.
  • 9Christofides N, Mingozzi A, Toth P. The Vehicle Routing Problem. Combinational Optimizaton [ M ]. New York : Johnly Wiley,1979.
  • 10谢秉磊,硕士学位论文,1999年

共引文献203

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部