摘要
设(S,X)是任一完备的随机赋范模,证明了(S,X)为随机自反的充要条件为对每一给定的正数p(1<p<+∞)Lp(S)为自反的Banach空间.
For the building domain D consisting of any N superballs in C n space,the integral formulas of Bochner Leray tape with finite discrete holomorphic kernel are established, and the global solution of eguation u=g and its uniform estimates are obtained.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第4期499-502,共4页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金
福建省自然科学基金
关键词
随机自反空间
随机赋范模
巴拿赫空间
Building domain of balls, Discrete kernel, Equation, Uniform estimate