期刊文献+

基于双局部阈值小波收缩的图像去噪算法 被引量:1

Wavelet shrinkage algorithm for image denoising based on two-local threshold
下载PDF
导出
摘要 提出了一种基于双局部阈值的小波收缩的图像去噪算法。该算法利用小波系数的幅值、空间特性以及对噪声图像的分割,得到两个局部阈值:幅度阈值和空间阈值。利用这两个局部阈值(每个区域阈值不同)对小波系数做相应的"收缩"处理和重构,从而得到一个优质的去噪图像。该算法计算简单速度快,去噪效果明显,优于其他一些去噪算法。 This paper presents a wavelet shrinkage algorithm for image denoising based on two-local threshold.This algorithm presents two-local threshold based on the wavelet eoefticients'magnitude,spatial regularity,and the segment of the denoised image. Shrinking and reconstructing the wavelet coefficients using the two-local threshold,and we can get a high quality image.The algorithm has sortie advantages such as low eomplexity,fast speed computation,high quality image denoising.The performance of the method is an improvement upon sortie other methods in the literature.
作者 刘洪 刘宇红
出处 《计算机工程与应用》 CSCD 北大核心 2007年第33期63-65,71,共4页 Computer Engineering and Applications
关键词 图像去噪 小波收缩 双局部阈值 二维离散平稳小波变换 image denoising wavelet shrinkage two-local threshold 2-D discrete stationary wavelet transform
  • 相关文献

参考文献9

  • 1Dugad R,Ahuja N.Video denoising by combining Kahnan and Wiener estimate[C].Proc IEEE Int Conf Image Processing, 1999,4:152-156.
  • 2Ojo O,Kwaaitaal-Spassova T.An algorithm for integrated noise reduction and sharpness enhancement [J].IEEE Trans Consum Electron, 2000,46( 5 ) : 474-480.
  • 3Huang S J.Adaptive noise reduction and image sharpening for digital video compression [C].Proc IEEE Int Conf Computational Cybernetics and Simulation, 1997,4 : 3142-3147,
  • 4Meguro M,Tagochi A,Hamada N,Data-dependent weighted median filtering with robust motion information for image sequence restoration[J].IEICE Trans Fund,2001,2:424-428.
  • 5Kim S D,Jang S K,Kim M J,et al .Efficient block-based coding of noise images by combining pre-filtering and DC[C].Proc IEEE Int Symp Circuits and Systems,1999,4:37-40.
  • 6Ling W,Tam P K S.Video denoising using fuzzy-eonneetedness principles [C].Proc lnt Syrup Intelligent Multimedia,Video,and Speech Processing, 2001 : 531-534.
  • 7Balster E J,Zhang Y F,Ewing R L.Feature-based wavelet shrinkage algorithm for image denoising [J].IEEE Transactions on Image Processing, 2005,14( 12 ) : 2024-2039.
  • 8Felzenszwalb P F,Huttenlocher D P.Efficient graph-based image segmentation [J].International Journal of Computer Vision, 2004,59 (2): 167-181.
  • 9Pizurica A,Philips W,Lemahieu l,et al.A joint inter and intrascale statistical model for Bayesian wavelet based image denoising[J].IEEE Trans hnage Process, 2002, 11 (5) : 545-557.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部