摘要
基于《知网》的词汇语义计算方法,提出了一种基于向量空间模型的文本信息检索新方法。方法的基本技术思想是通过计算关键词的语义相似度,并采用最大权匹配方法来计算查询向量和文本向量的相似度,作为相关文本的检索依据。该方法基于全局最优,使文本和查询向量中各词条的相似度总和最大,从而可以从整体上提高文本信息检索的准确率。论文还通过原型实验对该方法的有效性进行了验证。
Based on the computation of words-semantic similarity-of "How-net",a new method of document information retrievingbased on the model of vector space has been proposed.The basic ideas of the method are that,firstly we compute the similaritybetween keywords by the words-senmntic similarity of "How-net",and seeomtly compute the similarity between the query vectorand the document vector based on computing the nmxin^um-weight-matching.This algorithm is based on the optimization on over-all situation and it might find the maxinmm sum of each pair terms' similarity between the query vector and the document vec-tor.The experiment result has demonstrated the validity of the algorithm.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第33期176-180,共5页
Computer Engineering and Applications
基金
高等学校博士学科点专项科研基金(the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20030611016)
重庆大学骨干教师基金(Chongqing University Fund for Key Teachers Grant No.2003A33)
关键词
信息检索
知网义原
相似性计算
最大权匹配
information retrieval
How-net,similarity computing
maximum-weight-matching