摘要
文章从知识发现和数据挖掘的角度,利用粗糙集和BP神经网络的理论和方法,建立了基于粗糙集和BP神经网络相结合的供应链绩效预测模型。并结合一个供应链绩效预测实例,首先对其基于平衡记分卡的指标体系进行了约简,然后将约简的评价指标输入到BP神经网络中进行智能训练,最后把预测的样本输入到训练好的BP网络中得出供应链绩效的预测值,预测结果与实际结果基本吻合。
This article sets up a supply chain performance prediction model based on rough sets and neural network from Knowledge Discovery and Data Mining perspective,gives a supply chain performance prediction example,firstly reduces its index based on the balanced scorecard system,then inputs the reduction index to BP neural network for intelligent training,Finally,inputs the forecast sample to the trained network BP and gets supply chain performance predietive value.The forecast result is matched with the actual result.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第33期203-206,245,共5页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.70272034)
关键词
粗糙集
BP神经网络
约简
分辨矩阵
供应链绩效预测模型
rough sets
BP neural network
reduction
discernable matrlx
supply chain performance prediction model