期刊文献+

基于结点逼近提取的平面点集Voronoi图构建算法 被引量:6

Algorithm for Constructing Voronoi Diagram of Planar Points Based on Approximating and Extracting Vertices
下载PDF
导出
摘要 提出一种基于结点空间逼近、精确提取以及面向拓扑关系生成的2维平面点集的构建方法。主要给出了搜索矩形域及其剖分概念、Voronoi图的基本性质、矩形域与Voronoi图结点关系的定理及其证明、基于链队的矩形域剖分和结点逼近机制及结点提取策略、基于条带有序表的最近邻近发生元快速检索算法、矢量Voronoi图的拓扑关系建立算法等。经过算法分析和程序试验验证本文算法的时间复杂度为O(nlog2n),本方法可以扩展到平面任意发生元Voronoi图的构建,具有简洁、高精度、鲁棒性、高效、适合于海量数据等特点,并且具有较好的实用价值和应用前景。 A topology-oriented algorithm for constructing Voronoi diagram of point set in the two-dimensional Euclidean space based on approximating and extracting Voronoi vertices are proposed in this paper. The concepts of searching rectangle area and its dissection, the basic properties of Voronoi diagram, the theorems involved in the relation of rectangle and Voronoi vertices, the mechanism of dissecting rectangle and approximating vertices based on chained queue, the strategy of extracting the vertices, the algorithm of searching the closest generator based on ordered table of strip, and the method of constructing topology relation are given. The algorithm analysis and computational experiments verifiesthat the algorithm achieves time complexity of 0 ( n log2 n), high precision, robustness and flexibility for mass data, the algorithm can be expanded to construct the Voronoi diagram of planar arbitrary generators and also has practical value and application prospect.
出处 《测绘学报》 EI CSCD 北大核心 2007年第4期436-442,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金项目(40401046)
关键词 VORONOI图 结点提取 四叉剖分 拓扑关系 搜索矩形域 Voronoi diagram extracting vertices quartering dissection searching rectangle topology relation
  • 相关文献

参考文献6

二级参考文献86

  • 1杜江川,刘鸿健.基于段码的离散直线求交[J].计算机辅助设计与图形学学报,1995,7(1):25-32. 被引量:2
  • 2闵卫东,唐泽圣.二维任意域内点集的Delaunay三角划分的研究[J].计算机学报,1995,18(5):357-364. 被引量:62
  • 3[48]Ponamgi, M K, et al. Incremental algorithms for collision detection between solid models[J]. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(1): 51~64.
  • 4[49]Fujita K, et al. Voronoi diagram based cumulative approximation for engineering optimization[EB/OL].http://syd.meim.eng.osaka-u.ac.jp/papers/2000/09_AI AA_co.ps.
  • 5[50]Yahagi H, et al. The forest method as a new parallel tree method with the sectional Voronoi tessellation[EB/OL]. http://www.mpia-hd.mpg.de/theory/mori/preprints/ymy99 .ps.gz.
  • 6[51]Allard D. Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation[EB/OL].http//www. stat.washington.edu/tech.reports/tr293R.ps.
  • 7[52]Papadopoulo E, Lee D T. Critical area computation-a new approach[EB/OL]. http://web.eecs.nwu.edu/~dtlee/ISPD98.ps.
  • 8[53]Swanson K, et al. An optimal algorithm for roundness determination on convex polygons[J], Computational Geometry: Theory & Applications, 1995, 5:225~235.
  • 9[54]Kaplan C. Voronoi diagrams and ornamental design[EB/OL].http://www. cs.washington.edu/homes/csk/tile/papers/Kaplan_isama1999.pdf.
  • 10[6]Albers G, et al. Voronoi diagrams of moving points[J].International Journal of Computational Geometry & Applications, 1998, 8(3): 365~380.

共引文献135

同被引文献76

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部