期刊文献+

关于双曲衰减的违约相关模型及CDS定价 被引量:18

Model for Dependent Default With Hyperbolic Attenuation Effect and the Valuation of CDS
下载PDF
导出
摘要 引进一个双曲类型的衰减函数来表示一方违约对另一方违约强度的影响.若交易双方为竞争对手(合作公司),当一方的违约时,另一方的违约强度将减小(增大).随着时间的推移,这种影响将逐渐减小,直至为零.在这个模型下,通过测度变换,可以得到两公司违约时间的联合分布及各自的边际分布,从而可以对违约互换进行定价. A hyperbolic attenuation function was introduced to reflect the effect of one firm's default to its partner. If the two finns are competitors (copartners), the default intensity of one finn will decrease (increase) abruptly when the other finn defaults. As time goes on, the impact will decrease gradually until extinction. In this model, the joint distribution and marginal distributions of default times are derived by employing the change of measure, so the fair swap premium of a CDS can be valued.
出处 《应用数学和力学》 CSCD 北大核心 2007年第12期1468-1474,共7页 Applied Mathematics and Mechanics
基金 国家重点基础研究发展计划973资助项目(2007CB814903) 国家自然科学基金资助项目(70671069)
关键词 违约相关 双曲衰减函数 测度变换 信用违约互换 dependent default hyperbolic attenuation function change of measure credit defaultswap(CDS)
  • 相关文献

参考文献11

  • 1Jarrow R A, Yu F. Counterparty risk and the pricing of defaultable securities [ J ]. Journal of Finance ,2001,56(5) : 1755-1799.
  • 2Li D X. On default correlation: A copula function approach[J]. Journal of Fixed Income,2000,9 (Mar) :43-54.
  • 3Schonbucher P, Schubert D. Copula-Dependent Default Risk in Intensity Models[ Z]. Working paper: Bonn University, 2001.
  • 4Laurent J-P, Gregory J. Basket default swaps, CDO' s and factor copulas[ J ]. The Journal of Risk, 2005,7(4) : 103-122.
  • 5Duffie D, Singleton K. Modeling term structures of defaultable bonds[ J]. Review of Financial Studies, 1999,12(4) : 687-720.
  • 6Lando D. On cox processes and credit risky securities[ J]. Review of Derivatives Research, 1998,2 (2) :99-120.
  • 7Davis M,Lo V. Infectious defaults[J]. Quantitive Finance,2001,1(4) :383-387.
  • 8Leung S Y, Kwok Y K. Credit default swap valuation with counterparty risk[ J]. Kyoto Economic Review ,2005,74( 1 ) :25-45.
  • 9Collin-Dufresne P, Goldstein R S, Hugonnier J.A general formula for valuing defaultable securities [J]. Econometrica, 2004,72(5) : 1377-1407.
  • 10Harrison M, Pliska S. Martingales and stochastic integrals in the theorey of continuous trading[ J]. Stochast ics Processes and Their Applications, 1981,11: 215-260.

同被引文献131

引证文献18

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部