摘要
利用能量扰动法研究了一类非线性双曲方程utt-uxxt=f(ux)x的混合初边值问题整体解的衰减性,分别得到了f′(s)≥γ>0和f(s)=|s|α-2s两种情形下整体解的指数衰减性和多项式衰减性.
The energy decay for an initial boundary value problem of the nonlinear hyperbolic equation uu - uxxt =f(ux )x is studied by using a so-called energy perturbation method. The exponential decay of solution for the casef(s)≥7 〉0 and the algebraic decay of solution for the case f(s) = |s|^a-2s are proved respectively.
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2007年第5期89-91,共3页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
国家自然科学基金项目(10671182)
郑州轻工业学院硕士基金项目(2002SS13)
关键词
非线性双曲方程
混合初边值问题
整体解
衰减性
nonlinear hyperbolic equation
mixed boundary problem
global solution
decay rate