期刊文献+

一类非线性双曲方程初边值问题整体解的衰减

Energy decay of global solution of initial boundary value problem for a class of nonlinear hyperbolic equation
下载PDF
导出
摘要 利用能量扰动法研究了一类非线性双曲方程utt-uxxt=f(ux)x的混合初边值问题整体解的衰减性,分别得到了f′(s)≥γ>0和f(s)=|s|α-2s两种情形下整体解的指数衰减性和多项式衰减性. The energy decay for an initial boundary value problem of the nonlinear hyperbolic equation uu - uxxt =f(ux )x is studied by using a so-called energy perturbation method. The exponential decay of solution for the casef(s)≥7 〉0 and the algebraic decay of solution for the case f(s) = |s|^a-2s are proved respectively.
作者 韩献军 尹丽
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2007年第5期89-91,共3页 Journal of Zhengzhou University of Light Industry:Natural Science
基金 国家自然科学基金项目(10671182) 郑州轻工业学院硕士基金项目(2002SS13)
关键词 非线性双曲方程 混合初边值问题 整体解 衰减性 nonlinear hyperbolic equation mixed boundary problem global solution decay rate
  • 相关文献

参考文献5

  • 1Christensen R M. Theory of Viscoelasticity, An Introduction [ M ]. New York : Znded, Academic Press, 1982.
  • 2Andews G. On the existence of solutions to equation uu = uxxl+σ(ux)x[J]. J Diff Eq, 1980(35):200.
  • 3刘亚成.方程Uu=Uxxl+σ(Ux)x的初边值问题、周期边值问题与初值问题.数学年刊:A辑,1988,9(4):459-459.
  • 4Dafermos C M, The mixed initial-boundary value problem for the equations of nonlinear one-dimensional viscoelasticity [J]. JDiff Eq, 1969(6):71.
  • 5王艳萍,刘瑛.一类非线性双曲型方程的初边值问题[J].南阳师范学院学报,2002,1(2):10-16. 被引量:2

二级参考文献6

  • 1王书彬.半线性拟双曲型积分微分方程的初边值问题和初值问题[J].应用数学学报,1995,18(4):567-578. 被引量:15
  • 2Christensen,R.M.Theory of viscoelasticity. An Introduction[M] .Znded,Academic press,New York,1982.
  • 3Andews,G.On the Existence of solutions to equation utt= uxxt + σ(ux)x[J] .J.Diff. Eq. ,1980(35):200- 231.
  • 4刘亚成.方程utt=uxxt+σ(ux)x的初边值问题、周期边值问题与初值问题[J].数学年刊:A辑,1988,9(4):459-470.
  • 5周毓麟 符鸿源.广义Sine—Gordan型非线性高阶双曲型方程组[J].数学学报,1983,26:234-239.
  • 6Chen Guowang, Classical Global Solution of the Initial Boundry Value Problems for a Class of Nonlinear Parabolic Equations[ J ]. Comment Math. Vniv Caroline, 1994,35(3) :431 - 443.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部