期刊文献+

Iterative optimal control based on support vector machine modeling within the Bayesian evidence framework 被引量:1

基于贝叶斯证据框架下支持向量机建模的迭代优化控制(英文)
下载PDF
导出
摘要 In the paper, an iterative method is presented to the optimal control of batch processes. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because support vector machine is powerful for the problems characterized by small samples, nonlinearity, high dimension and local minima, support vector regression models are developed for the optimal control of batch processes where end-point properties are required. The model parameters are selected within the Bayesian evidence framework. Based on the model, an iterative method is used to exploit the repetitive nature of batch processes to determine the optimal operating policy. Numerical simulation shows that the iterative optimal control can improve the process performance through iterations. 在纸,一个反复的方法被介绍给批进程的最佳的控制。通常为一个批过程获得一个精确机械学的模型是很困难的。因为支持向量机器为小样品,非线性,高尺寸和本地最小描绘的问题是强大的,支持向量回归模型为端点性质被要求的批过程的最佳的控制被开发。模型参数在贝叶斯的证据框架以内被选择。基于模型,一个反复的方法被用来利用批过程的重复性质决定最佳的操作政策。数字模拟证明反复的最佳的控制能通过重复改进进程性能。
出处 《Journal of Shanghai University(English Edition)》 CAS 2007年第6期591-596,共6页 上海大学学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.60504033)
关键词 iterative optimal control support vector machine (SVM) Bayesian evidence framework. 贝叶斯证据框架 支持向量机 建模 迭代优化控制
  • 相关文献

参考文献10

  • 1FLORES-CERRILLO J,,MACGREGOR J F.Within-batch and batch-to-batch inferential-adaptive control of semi- batch reactors:a partial least squares approach[].Industrial Engineering and Chemistry Research.2003
  • 2ZHANG J.Multi-objective optimal control of batch processes using recurrent neuro-fuzzy networks[].Proceedings of the International Joint Conference on Neural Networks.2003
  • 3ZHANG J.Neural network model based batch-to-batch optimal control[].Proceedings of the IEEE In- ternational Symposiura on Intelligent Control.2003
  • 4CHEN GuohuaHong Kong University of Science & TechnologyLIU XiangdongChina Agriculture UniversityQU YixinBeijing University of Chemical Technology.Guest Editorial[J].Chinese Journal of Chemical Engineering,2004,12(6). 被引量:1
  • 5LUY T,YANG X H,XIONG Z H,ZHANG J.Batch-to- batch optimal control based on support vector regres- sion model[].Lecture Notes in Computer Science.2005
  • 6VAPNIK V.The Nature of Statistical Learning The- ory[]..1999
  • 7RAJESH J,,GUPTA K,KUSUMAKAR H S.Dynamic opti- mization of chemical processes using ant colony frame- work[].Computers and Chemistry.2001
  • 8Xiong Zhihua,Zhang Jie.A batch-to-batch iterative optimal control strategy based on recurrent neural network models[].Journal of Process Control.2005
  • 9Suykens J A K,et al.Optimal control by least squares support vector machines[].Neural Networks.2001
  • 10YAN W W,SHAO H H,WANG X F.Soft sensing modeling based on support vector machine and Bayesian model selection[].Computers and Chemistry.2004

同被引文献22

  • 1MALLET C,BRETAR F.Full-waveform topographic lidar:state-of-the-art[J].ISPRS Journal of Photogrammetry and Remote Sensing,2008,64(1):1-16.
  • 2HOFTON M A,MINSTER J B,BLAIR J B.Decomposition of laser altimeter waveforms[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(4):1989-1996.
  • 3WAGNER W,ULLRICH A,DUCIC V,et al.Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J].ISPRS Journal of Photogrammetry and Remote Sensing,2005,60(2):100-112.
  • 4JUTZI B,STILLA U.Range determination with waveform recording laser systems using a Wiener filter[J].ISPRS Journal of Photogrammetry and Remote Sensing,2006,61(2):95-107.
  • 5RONCAT A,BERGAUER G,PFEIFER N.B-spline deconvolution for differential target cross-section determination in full-waveform laser scanning data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(4):418-428.
  • 6BELINA F,LRVING J,ERNST J,et al.Analysis of an iterative deconvolution approach for estimating the source wavelet during waveform inversion of crosshole georadar data[J].Journal of Applied Geophysics,2012,78:20-30.
  • 7WAGNER W,RONCAT A,MELZER T,et al.Waveform analysis techniques in airborne laser scanning[J].International Archives of Photogrammetry and Remote Sensing,2007,36(3):413-418.
  • 8BRETAR F,CHAUVE A,MALLET C,et al.Managing full waveform lidar data:a challenging task for the forthcoming years[EB/OL].[2015-02-10].http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/69.pdf.
  • 9WANG C,LI Q,LIU Y,et al.A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,101:22-35.
  • 10CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部