期刊文献+

EMD方法基于径向基神经网络预测的数据延拓与应用 被引量:23

APPLICATION OF EMD METHOD WITH DATA EXTENSION TECHNIQUE BASED ON RBF NEURAL NETWORK TO TIME-FREQUENCY ANALYSIS
下载PDF
导出
摘要 把基于径向基神经网络(radbas function,RBF)预测的数据延拓技术引入经验模态分解(empirical mode decompo-sition,EMD)时频分析领域,论述基于RBF神经网络预测的数据延拓技术原理,通过对非线性仿真信号基于RBF神经网络预测延拓研究表明,该延拓技术是有效的,并且把该延拓技术应用于转子横向裂纹的时频分析,获得良好的效果。该研究成果能广泛用于信号时频分析领域。 The data extension technique based on the radbas function(RBF) neural network prediction is introduced to time-frequency analysis by the empirical mode decomposition(EMD) method. The data extension technique applied to a simulation signal is explained in detail. EMD time-frequency analysis with the data extension technique on vibration signal of a deeply cracked rotor is introduced and the results show that the method is helpful to detect the phase-modulation caused by torsional vibration of the rotor. The suggested method can be applied widely to time-frequency analysis field.
出处 《机械强度》 EI CAS CSCD 北大核心 2007年第6期894-899,共6页 Journal of Mechanical Strength
基金 国家自然科学基金(50675194) 宁波市自然科学基金(No2007A610014)资助项目~~
关键词 经验模态分解(EMO)方法 径向基(RBF)神经网络预测 数据延拓 时频分析 Empirical mode decomposition(ENID) method Radbas function(RBF) neural network prediction Data extension Time-frequency analysis
  • 相关文献

参考文献7

  • 1Norden E Huang, Zheng Shen, Steven R Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, London, 1998.903 - 995.
  • 2Better Algorithms for Analyzing Nonlinear, Nonstationary Data. http: //tco. gsfc. nasa. gov.
  • 3Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses. Bulletin of the Seismological Society of America,2001,91:1 339 - 1 357.
  • 4Vasudcvan K, Cook F A. Empirical mode skelctonization of deep crustal seismic data: Theory and applications. Journal of Geophysical Research-Solid EARTH,2000, 105:7 845 - 7 856.
  • 5Echeverria J C, Crowe J A, Woolfson M S, et al. Application of empirical mode decomposition to heart rate variability analysis. Medical & Biological Engineering & Computing, 2001,39:471 - 479.
  • 6陈忠,郑时雄.基于经验模式分解(EMD)的齿轮箱齿轮故障诊断技术研究[J].振动工程学报,2003,16(2):229-232. 被引量:53
  • 7胡劲松,杨世锡,吴昭同,严拱标.基于EMD和HT的旋转机械振动信号时频分析[J].振动.测试与诊断,2004,24(2):106-110. 被引量:48

二级参考文献7

  • 1Vasudevan K, Cook F A. Empirical mode skeletonization of deep crustal seismic data: theory and applications. Journal of Geophysical Research-Solid Earth,2000, (105):7845~7856
  • 2Echeverria J C, Crowe J A, Woolfson M S, et al. Application of empirical mode decomposition to heart rate variability analysis. Medical & Biological Engineering &Computing, 2001, (39) :471~479
  • 3Norden E, Huang Z S, Steven R L, et al. The empirical mode decomposition and the non-stationary time series analysis. In: Proc. R. Soc. Lond, 1998. 903~995
  • 4Better algorithms for analyzing nonlinear, nonstationary data. http:∥tco. gsfc. nasa. gov
  • 5Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses. Bulletin of the Seismological Society of America, 2001, (91) :1339~1357
  • 6Huang N E, Shen Zheng and Steven R L, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.Proc. R. Soc. Lond. A, 1998;454: 903--995.
  • 7Huang N E, Shen Zheng and Steven R L. A new view of nonlinear water waves: the Hilbert spectrum. Annu.Rev. Fluid Mech. , 1999 ;31: 417--457.

共引文献92

同被引文献217

引证文献23

二级引证文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部