期刊文献+

三种综合脉冲星时算法的研究和比较

Study and comparisons of three ensemble pulsar time algorithm
下载PDF
导出
摘要 建立在小波分析基础上的综合脉冲星时算法,能把脉冲星的观测计时残差在小波域分解,提取出不同频率范围的分量,然后用小波方差表征脉冲星在不同频率范围的稳定度来对单脉冲星时进行加权平均,得到综合脉冲星时;脉冲星的计时残差包括了计时参考的原子钟的误差和与脉冲星本身有关的计时误差2部分,用维纳滤波的方法可以将两者进行一定区分,并消除估计的参考钟误差,将剩余部分作为计时残差实现对脉冲星计时的综合.实验证明,小波分析和维纳滤波方法比经典的加权算法更好,得到的综合脉冲星时的长期稳定度有了较大提高. Pulsar time defined by single pulsar is influenced by several noise resources, to weaken these influences for gaining a more stable time scale, one can take ensemble analysis method to obtain ensemble pulsar time. Three algorithms of ensemble pulsar time are presented: classical weighted average algorithm, to gain the best long-term stability of ensemble pulsar time, one can choose the weight according to the long-term stability of each pulsar; the residuals of single pulsar can be decomposed by wavelet analysis in wavelet domain, and the component of different frequency range can be obtained. Then we can apply wavelet analysis algorithm to integrate the pulsar time;the weights are chosen according to reciprocal of wavelet average square error. The pulsar timing residuals are caused by reference atomic clock and pulsar itself. Wiener filtration analysis algorithm allows the separation of the contributions of an atomic clock and a pulsar itself to the post-fit pulsar timing residuals. The method allows to filter the atomic scale component from the pulsar phase variations. These three algorithms have been applied to the timing data of the millisecond pulsars PSR B1855 + 09 and PSR B1937 + 21. The result has indicated that the ensemble pulsar time obtained after the ensemble algorithm to pulsar time defined by several pulsar time weakens the influence of noise on a great extent, and consequently improves the stability. Furthermore the stability of the ensemble pulsar time obtained by wavelet analysis algorithm and Wiener filtration are better than the stability of the ensemble pulsar time obtained by sample weighted average algorithm. Obviously, wavelet analysis algorithm and Wiener filtration are more feasible approach to deal with time-frequency signals.
出处 《中国科学院研究生院学报》 CAS CSCD 2007年第6期806-813,共8页 Journal of the Graduate School of the Chinese Academy of Sciences
关键词 天体测量学 综合脉冲星时 小波分析 维纳滤波 astrometry, ensemble pulsar time, wavelet analysis, Wiener filtration
  • 相关文献

参考文献17

  • 1Hewish A, et al. Nature,1968,217:709.
  • 2Backer DC, et al. Nature, 1982,300 : 625.
  • 3Kaspi VM,Taylor JH, Ryba MF. ApJ, 1994,428:713.
  • 4Kaspi VM, et al. Millisecond pulsar timing:recent advances. 1995. 345 - 356.
  • 5Petit G,Tavella P. A&.A, 1996,308:290 - 298.
  • 6Petit G,Thomas C.In:An Ensemble Pulsar Time 24^th PTFI Meeting 1992.73 - 85.
  • 7Petit G, Tavella P, Thomas C. How can millisecond pulsars improve the long term stability of atomic time scales. In: Proc 6^th European Frequency and Time Forum. 1992.57 - 60.
  • 8Demetrios N Matsakis, Taylor JH, T Marshall Eubanks. A&.A, 1997,326 : 924 - 928.
  • 9Allan DW. IEEE Trans Ultras, Ferroelect , Freq Contr , 1987,34:647.
  • 10Stephane Mallat著.杨力华,等译.信号处理的小波导引.北京:机械工业出版社,2002.2-3.

二级参考文献37

  • 1Backer D C. In: Edward P, van den H eds. Timing Neutron Stars, Boston: Kluwer Academic Publishers,1989:3.
  • 2Taylor J H. In: Edward P, van den H eds. Timing Neutron Stars, Boston: Kluwer Academic Publishers,1989:17.
  • 3Cognard I, Lestrade J F, Maitia V. In: Tran Thanh van ed. Gravitational Waves and Experimental Gravity,Les Arcs: World Publishers, 1999:319.
  • 4Cognard I, Lestrade J F. A&A, 1997, 323:211.
  • 5Lange Ch, Wex N, Kramer M et al. ASP Conf. Sen., 2000, 202:61.
  • 6Doroshenko O V, Hyasov Y P, Oreshko V V. ASP Conf. Ser., 2000, 202:57.
  • 7Rodin A E, Kopeikin S M, Yu Ilyasov. http://www.prao.psn.ru/english/publikacii, 2001.
  • 8Kopeikin S M. MNRAS, 1997, 288:129.
  • 9Kopeikin S M. MNRAS, 1999, 305:513.
  • 10Hanado Y, Shibuya Y, Hosokawa M. PAS J, 2002, 54:305.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部