期刊文献+

茶园土壤耐酸铝微生物的分离鉴定及其耐铝特性研究 被引量:11

Isolation and characterization of acid-and Al-tolerant microorganisms.
下载PDF
导出
摘要 对茶园土壤中耐酸铝微生物进行分离纯化,并选择其中的3株真菌,用通用引物NS1和NS8PCR扩增出全长18S rDNA基因,测序后与GenBank数据库中的相似序列构建系统发育树,结合真菌形态分析,初步鉴定为:Aspergillus zonatus,Penicilliumsp.和Rhizopussp..他们都具有很强的耐酸铝特性,其中F2株甚至可以在200 mmol·L-1的Al3+、pH2.2的条件下生长.在pH3.5的琼脂平板培养基上,铝对3株真菌生长速率的影响总体表现为:随Al3+浓度的增加而下降,其中F6株较为明显,而低浓度的铝(10 mmol·L-1)对F2株生长有一定促进作用.在pH3.5的土壤提取液培养基(S-LB)中培养7d后,3株真菌的培养液pH均升高到7.0左右,铝的含量也由于pH的升高而降低;在含1.0%葡萄糖的土壤提取液培养基中,培养液pH却降低到2.7左右,并且铝的含量几乎没有变化.这些结果揭示了分离的真菌可能具有不同的耐酸铝机制. Acid- and aluminum (Al)-tolerant microorganisms were isolated from acidic tea fields, from which three fungal strains were selected and identified as Aspergilluz zonatus, Penicillium sp. and Rhizopus sp. by molecular phylogenetic trees based on 18S rDNA gene sequences and morphological characteristic analysis, They were tolerant to Al^3+ up to 100-200 mmol · L^-1 and could grow at low pH. F2 strain even could grow at pH2. 2, 200 mmol· L^-1 Al^3+. Generally, the growth rates showed decreasing trends with the increasing concentration of Al^3+ when the microorganisms were cultured on agar plate with pH3. 5. However, the low concentration of Al^3+ may accelerate the growth of F2 strain, In a soil extract medium (pH3. 5), pH of the spent medium of all strains increased to around 7.0 and Al^3+ content in the spent medium decreased due to the increase of pH. When put 1.0% glucose into the soil extract medium, pH of the spent medium decreased to 2.7, Al^3+ content in the spent medium almost remained constant. These results suggested that the fungi isolated possibly have different acid- and Al-tolerant mechanisms.
出处 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2007年第6期626-632,共7页 Journal of Zhejiang University:Agriculture and Life Sciences
基金 国家自然科学基金资助项目(30671207)
关键词 铝(Al) 真菌 分离鉴定 耐酸铝微生物 aluminum (Al) fungi isolation and identification acid- and Al -tolerant microorganisms
  • 相关文献

参考文献22

  • 1KochianL V. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46 (6) : 237-260.
  • 2Fageria N K, Carvalho J R P. Influence of aluminum in nutrient solutions on chemical composition in upland rice cultivars [J]. Plant and Soil, 1982, 69(1) : 31-44.
  • 3Juan Manuel de la Fuente, Verenice Ramirez- Rodriguez,Jose Luis Cabrera-Ponce, et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis [J].Science, 276 (6): 1566-1568.
  • 4Suwalskya M, Norrisb B, Villenab F, et al. Aluminum fluoride affects the structure and functions of cell membranes [J]. Food and Chemical Toxicology, 2004, 42 (6): 925-933.
  • 5Ryan P R, Skerrett M, Findlay G P, et al. Aluminum activates an anion channel in the apical cells of wheat roots [J]. Proceedings of the National Academy of Sciences(USA), 1997, 94: 6547-6552.
  • 6Ma J F, Zheng S J, Matsumoto H. Detoxifying aluminum with buckwheat [J]. Nature, 1997, 390 (11) : 569-570.
  • 7Ma J F, Taketa S, Yang Z M, et al. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale [J]. Plant Physiology, 2000, 122 (3): 687-694.
  • 8Sierra J, Ozier L H, Dufour A, et al. Nutrient and assimilate partitioning in two tropical maize cultivars in relation to their tolerance to soil acidity[J]. Field Crops Research, 2005 (8): 1130-1135.
  • 9Miyasaka S C, Buta J G, Howell R K, et al. Mechanism of aluminum tolerance in snapbean, root exudation of citric acid [J]. Plant Physiology, 1991, 96 (3) : 737-743.
  • 10Zheng S J, Ma J F, Matsumoto H. Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress [J]. Physiologia Plantarum, 1998, 103: 209-214.

二级参考文献2

共引文献15

同被引文献153

引证文献11

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部