期刊文献+

矩形网格三维显式差分偏移 被引量:1

Explicit 3D migration on rectangular grids.
下载PDF
导出
摘要 由Hale提出的基于McClellan变换的三维显式差分偏移算法能够对速度横向变化剧烈的陡倾角复杂介质偏移成像,该算法计算效率高,但只适用于方形网格上采集的资料。对于矩形网格的地震记录,通常需将其先插值到方形网格上,然后再应用基于McClellan变换的三维显式差分偏移算法进行偏移成像,这样既降低了计算效率,又增加了对内存的需求。为此,提出了一种修正McClellan变换的三维显式差分偏移算法,即将插值嵌于外推算子中,无需对数据重采样,可以直接对矩形网格资料进行偏移成像。理论分析与数值实验结果表明,应用修正方法偏移成像的结果与基于数据插值的显式偏移算法结果相吻合,但计算量显著降低。 Explicit 3D migration based on McClellan transform proposed by Hale is capable of imaging efficiently the steep complicated me- dium with vigorous change in lateral velocity.Although this meth- od is high in computation efficiency,it is only suitable for the data acquired from square grids.As for the data acquired form rectangu- lar grids,the data is firstly interpolated onto square grids and then goes on migration imaging based on Hale's scheme,greatly in- creasing the computation cost and the demand for memory.There- fore,an explicit 3D differential migration algorithm based on a modified McClellan transform was proposed,which handles une- qual sampling intervals in the inline and crossline directions and no resample is needed.The modified McClellan transformation matrix can directly image data from a square grid.Theoretical analysis and numerical examples show that our explicit 3D differential migration algorithm can effectively provide high quality of wave equation mi- gration results which agree very well with the results from standard Hale's scheme with data interpolation.
机构地区 CGGVeritas 公司
出处 《石油物探》 EI CSCD 2007年第6期588-593,共6页 Geophysical Prospecting For Petroleum
关键词 显式差分 三维偏移 契比雪夫递归滤波器 单程波动方程 McClellan变换 explicit finite difference 3D migration Chebyehev recursive filter one way wave equation McClellan transform
  • 相关文献

参考文献13

  • 1Ristow D, Ruhl T. Fourier finite-difference migration [J]. Geophysics, 1994, 59(12): 1 882-1 893
  • 2Li Z. Comensating finite-difference errors in 3-D migration and modeling[J]. Geophysics, 1991, 56(10) : 1 650-1 660
  • 3Huang L, Fehler M C, Wu R Extended local Born Fourier migration method[J]. Geophysics, 1999, 64 (5) : 1 524-1 534
  • 4Le Rousseau J H, de Hoop MV. Modeling and imaging with the scalar generalized-screen algorithms in isotropic media[J]. Geophysics, 2001, 66(5): 1 551- 1 568
  • 5Zhang Y, Xie Y, Notfors C, et al. Experience with generalized-screen methods in wave equation migrations[J]. Expanded Abstracts of EAGE 65^th Annual Conference, 2003, B09
  • 6Hale D. Stable explicit depth extrapolation of seismic wavefields[J]. Geophysics, 1991, 56(11): 1 770-1 777
  • 7Hale D. 3-D depth migration via McClellan transformation[J]. Geophysics, 1991, 56(11) : 1 778-1 785
  • 8Notfors C. Accurate and efficient explicit 3-D migration[J]. Expanded Abstracts of 65^th Annual Internat SEG Mtg,1995, 1 036-1 039
  • 9Hazra S N,Reddy M S. Design of circularly symmetric low-pass two-dimensional FIR filters using transformation[J]. IEEE Transcations on Circuits and Systems, 1986,33(10) : 1 022-1 026
  • 10Mersereau R M, Mecklenbrauker W G, Quatieri T F. McClellan transformation for two-dimensional digital filtering: I-Design[J]. IEEE Transcations on Circuits and Systems,1976, 23(7): 405-414

同被引文献34

  • 1Cotlino F,Joly P. Splitting of operators, alternate directions, and paraxial approximations for the three dimensional wave equation[J]. SIAM journal on scientific computing, 1995,16(5) : 1 019-1 048
  • 2Alkhalifah T. An acoustic wave equation for anisotropy media[J]. Geophysics,2000,65(4): 1 239-1 250
  • 3Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986,51(10):1 954-1 966
  • 4Ristow D, Ruhl T. Migration in transversely isotropic media using implicit operators[J]. Expanded Abstracts of 67^th Annual Internat SEG Mtg,1997,1 699-1 702
  • 5Day R S, Liu F, Hanson D W, et al. A stable wave equation migration method in 3D VTI media[J]. 67^th EAGE Conference & Exhibition incorporating SPE EUROPEC, 2005, P002
  • 6Shan G. Optimized implicit finite-difference migration for VTI media[J]. Expanded Abstracts of 76^th Annual Internat SEG Mtg,2006, 2 367-2 371
  • 7Baumstein A, Anderson J. Wavefield extrapolation in laterally varying VTI media[J]. Expanded Abstracts of 73^rd Annual Internat SEG Mtg, 2003,945-948
  • 8Shah G, Boindi B. 3D wavefield extrapolation in laterally-varying tilted TI media[J]. Expanded Abstracts of 75^th Annual Internat SEG Mtg,2005,104-107
  • 9Le Rousseau J H. Depth migration in heterogeneous, transversely isotropy media with the phase-shift-plusinterpolation method[J]. Expanded Abstracts of 67^th Annual Internat SEG Mtg, 1997,1 703-1 706
  • 10Ferguson R J, Margrave G F. Depth migration in TI media by nonstationary phase[J]. Expanded Abstracts of 68^th Annual Internat SEG Mtg, 1998,1 831-1 834

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部