期刊文献+

Al2O3/SnO2 Co-Nanoparticle Modified Grafted Collagen for Improving Thermal Stability and Infrared Emissivity

Al2O3/SnO2 Co-Nanoparticle Modified Grafted Collagen for Improving Thermal Stability and Infrared Emissivity
原文传递
导出
摘要 Al2O3/SnO2 co-nanoparticles were prepared with a modified sol-gel technique followed by a thermal treatment process. With these co-nanoparticles the grafted collagen-Al2O3/SnO2 nanocomposites were obtained using a supersonic dispersion method. X-ray diffraction, FT-IR analysis, transmission electron microscopy, TGA/DTA and infrared emissivity test were performed to characterize the resulting nanoparticles and nanocomposites, respectively. The Al2O3/SnO2 co-nanoparticles showed a narrow distribution of size between 20-40 nm and could be uniformly absorbed on the tri-helix scaffolds of the grafted collagen without any aggregation. The nanocomposites possessed better thermal stability and substantially lower infrared emissivity than the grafted collagen and Al2O3/SnO2 co-nanoparticles with an increase of degradation temperature from 39 to 210 ℃ and a decrease of infrared emissivity from 0.850 of the grafted collagen and 0.708 of the Al2O3/SnO2 co-nanoparticles to 0.424, which provided a potential application of the nanocomposites to areas such as photoelectronics. Al2O3/SnO2 co-nanoparticles were prepared with a modified sol-gel technique followed by a thermal treatment process. With these co-nanoparticles the grafted collagen-Al2O3/SnO2 nanocomposites were obtained using a supersonic dispersion method. X-ray diffraction, FT-IR analysis, transmission electron microscopy, TGA/DTA and infrared emissivity test were performed to characterize the resulting nanoparticles and nanocomposites, respectively. The Al2O3/SnO2 co-nanoparticles showed a narrow distribution of size between 20-40 nm and could be uniformly absorbed on the tri-helix scaffolds of the grafted collagen without any aggregation. The nanocomposites possessed better thermal stability and substantially lower infrared emissivity than the grafted collagen and Al2O3/SnO2 co-nanoparticles with an increase of degradation temperature from 39 to 210 ℃ and a decrease of infrared emissivity from 0.850 of the grafted collagen and 0.708 of the Al2O3/SnO2 co-nanoparticles to 0.424, which provided a potential application of the nanocomposites to areas such as photoelectronics.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2007年第12期1849-1853,共5页 中国化学(英文版)
基金 Project supported by the National Natural Science Foundation of China for Distinguished Young Scholar (No. 20325518), Creative Research Groups (No. 20521503) and a key program (No. 20535010) to JHX, the Program for New Century Excellent Talents in Universities of Education Ministry of China to ZYM (No. NCET-04-0482), and the Postdoctoral Foundation of China to CY (No. 2005038234).
关键词 grafted collagen Al2O3/SnO2 NANOPARTICLE NANOCOMPOSITE thermal stability infrared emissivity grafted collagen, Al2O3/SnO2, nanoparticle, nanocomposite, thermal stability, infrared emissivity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部