期刊文献+

外场作用下由工业TiOSO_4液合成介孔二氧化钛(英文) 被引量:2

Synthesis of Mesoporous TiO_2 from Industrial TiOSO_4 Solution under Potential Outfield
下载PDF
导出
摘要 以工业硫酸氧钛为钛源,采用复合模板合成路线,分别于超声,微波和水热外场作用下合成了介孔二氧化钛前驱体。通过调节反应体系的pH值来控制TiOSO_4液的水解和缩聚速率。煅烧脱除模板后得到锐钛型的介孔二氧化钛。产物采用XRD,氮等温吸附脱附,粒度分布,SEM,TEM,SAD和X射线能谱分析(XPS)等技术进行了表征。结果表明:具有强极化作用和温和水热环境的外场利于制备结构更佳的介孔二氧化钛;超声振动利于介观结构的形成。在微波辐照下,所制得介孔二氧化钛的比表面积为146.6 m^2/g,平均孔径2.57 nm,晶粒尺寸13.65 nm。超声、微波和水热较常规合成方法更利于形成和稳定介孔结构。 The precursors of mesoporous titania were synthesized via composite templates route from industrial TiOSO4 solution under ultrasonic, microwave and hydrothermal field effect. The rate of hydrolysis and condensation of TiOSO4 solution was controlled by adjusting the pH value of the reacting system. Mesoporous titania with anatase phase was obtained after templates removal by calcinations. The as-prepared powder was characterized by XRD, N2 isothermal adsorption and desorption method, particle size distribution, SEM, TEM, SAD and XPS. External field with enhancing polar action and soft hydrothermal condition is adaptive to prepare better mesoporous titania. Ultrasonic vibration promotes the formation of mesoporous structure. Under microwave irradiation, mesoporous TiO2 was synthesized with BET surface area 146.6 m^2/g, average pore diameter 2.57 nm and crystal size 13.65 nm. Ultrasonic, microwave irradiations and hydrothermal condition are better than conventional method in forming mesopore and stabilizing the structure.
机构地区 四川大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2007年第A03期631-636,共6页 Rare Metal Materials and Engineering
基金 Supported by the National Natural Science Foundation of China(50474071,50274056)
关键词 介孔二氧化钛 外场作用 工业TiOSO4液 复合模板合成 mesoporous titania potential outfield effect industrial TiOSO4 solution composite template synthesis
  • 相关文献

参考文献23

  • 1Kresge C T, Leonowicz M E, Roth W J et al. Nature [J], 1992, 359(6397): 710
  • 2Beck J S, Vartuli J C, Roth W J et al. J Am Chem Sot[J], 1992, 114(27): 10 834
  • 3Mark E Davis. Nature[J], 2002, 417(6891): 813
  • 4Hoffmann M R, Martin S T et al. Chem Rev [J], 1995, 95(1): 69
  • 5Puzenat E, Pichat P. J Photochem Photobiol A[J], 2003, 160(1-2): 127
  • 6Feringa B L, Huck N P, van Doren H A. J Am Chem Soc [J], 1995, 117(39): 9929
  • 7Antonelli D. Microporous Mesoporous Mater[J], 1999, 30(2-3): 315
  • 8Hirobumi S, Taku O, Tatsuya M et al. J Am Chem Soc[J], 2005, 127(47): 16 396
  • 9Suslick K S, Price G J. Ann Rev Mater Sci[J], 1999, 29:295
  • 10Wang Yanqin, Tang Xianghai, Yin Lunxiang et al. Adv Mater[J], 2000, 12( 10): 1183

二级参考文献25

  • 1Frindell K L,Tang J,Harreld J H,et al.[J].Chem Mater,2004,16:3524-3532.
  • 2Sreethawong T,Suzuki Y,Yoshikawa S.[J].Journal of Solid State Chemistry,2005,178:329-338.
  • 3Kirsch B L,Richman E K,Riley A E,et al.[J].J Phys Chem B,2004,108:12698-12706.
  • 4Yun H S,Miyazawa K,Honma I,et al.[J].Mater Sci and Eng C,2003,23:487-494.
  • 5Cassiers C,Linssen T,Mathieu M,et al.[J].J Phys Chem B,2004,108:3713-3721.
  • 6Tan Ruiqin,He Yu,Zhu Yongfa,et al.[J].J Mater Sci,2003,38:3973-3978.
  • 7Devi G S,Hyodo T,Shimizu Y,et al.[J].Sensors and Actuators B,2002,87:122-129.
  • 8Yun H S,Miyazawa K,Zhou H,et al.[J].Adv Mater,2001,13(18):1377-1380.
  • 9Davis M E.[J].Nature,2002,417:813-821.
  • 10Antonelli D M,Ying J Y.[J].Angew Chem Int Ed Engl,1995,34(18):2014-2017.

共引文献8

同被引文献26

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部