期刊文献+

基于鲁棒可靠性的不确定系统最优二次鲁棒镇定控制器设计 被引量:1

Optimal Controller Design of Quadratic Stabilization of Parametric Uncertain Systems Using Robust Reliability Method
下载PDF
导出
摘要 基于二次稳定性准则,从可靠性这一新的角度考虑不确定系统的稳定性问题,提出了基于鲁棒可靠性的不确定系统鲁棒镇定控制器设计方法,将鲁棒控制器设计归结为基于可靠性的优化问题:以鲁棒可靠度为约束,极小化控制代价。依据该法设计的控制系统可满足稳定性意义上的鲁棒可靠性要求,并给出保证系统稳定性所要求的基本参数的最大鲁棒界限。适用于不确定参数的摄动范围准确已知和未知等情况。对F4E型战斗机的稳定控制器设计及对比研究表明了所提方法是实用、有效和可行的。 Stability issue of uncertain systems is studied from a new viewpoint of reliability and based on quadratic σ-stability criterion.A new method for robust stabilizing controller design of parametric uncertain systems that based on robust reliability consideration is proposed.The optimal robust controller design is carried out by an optimization based on reliability, and the controller designed by the presented method can satisfy the requirements for robust reliability in the sense of quadratic stability and the maximum robustness bounds of uncertain parameters can be provided.The presented formulations are within the framework of linear matrix inequality(LMI)and can be implemented conveniently.The effectiveness and feasibility of the presented method are demonstrated by numerical simulations and comparison with available results of stabilizing of a longitudinal short period mode of F4E fighter aircraft.
作者 郭书祥
出处 《航空学报》 EI CAS CSCD 北大核心 2007年第6期1438-1442,共5页 Acta Aeronautica et Astronautica Sinica
基金 中国博士后科学基金(2003034410) 空军工程大学理学院科学基金(2005ZK12)
关键词 鲁棒控制 稳定性 鲁棒可靠性 线性矩阵不等式 robust control stability robust reliability linear matrix inequality
  • 相关文献

参考文献9

  • 1Mao Weijie, Chu Jian. Quadratic stability and stabilization of dynamic interval systems [J]. IEEE Trans on Automatic Control, 2003,48(6) : 1007-1012.
  • 2Wang Kaining, Michel A N, Liu Derong. Necessary and sufficient conditions for the Hurwitz and Schur stability of interval matrices[J]. IEEE Trans on Automatic Control, 1994,39(6) : 1251-1255.
  • 3Hu Sanqing, Wang Jun. On stabilization of a new class of linear time invariant interval systems via constant state feedback control[J]. IEEE Trans on Automatic Control, 2002,45(1) :2106-2111.
  • 4Garotenuto L, Franze G, Muraca P. Computational method to analyse the stability of interval matrices [J]. IEE Proceedings on Control Theory and Application, 2004,151 (6) : 669-674.
  • 5Guo Shuxiang, Zhang Ling. Robust reliability method for quadratic stability analysis and stabilization of dynamic interval systems [C]//Proceedings of the 2005 International Conference on Control and Automation. Budapest, Hungary : IEEE, 2005 : 789-793.
  • 6Xie Lihua, Fu Minyue, Souza C E. H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback[J]. IEEE Trans on Automatic Control, 1992,37(8) :1253-1256.
  • 7Xie Lihua. Output feedback H∞ control of systems with parameter uncertainty[J].International Journal of Control, 1996,63(4):741-750.
  • 8Ngamsom P, Hoberock L L. Using robust stability analysis theorems for robust controller design[J]. Journal of Dynamic Systems, Measurement, and Control, 2003,125 (3) : 669-671.
  • 9郭书祥.参数不确定系统鲁棒镇定控制器设计的鲁棒可靠性方法[J].系统工程与电子技术,2007,29(10):1699-1703. 被引量:5

二级参考文献14

  • 1Mao W-J,Chu J.Quadratic stability and stabilization of dynamic interval systems[J].IEEE Trans.on Automatic Control,2003,48(6),:1007-1012.
  • 2Wang K,Michel A N,Liu D.Necessary and sufficient conditions for the Hurwitz and Schur stability of interval matrices[J].IEEE Trans.on Automatic Control,1994,39:1251-1255.
  • 3Hu S,Wang J.On stabilization of a new class of linear time invariant interval systems via constant state feedback control[J].IEEE Trans.on Automatic Control,2002,45:2106-2111.
  • 4Garotenuto L,Franze G,Muraca P.Computational method to analyse the stability of interval matrices[J].IEE Proceedings on Control Theory and Application,2004,151 (6):669-674.
  • 5Guo S X,Zhang L.Robust reliability method for quadratic stability analysis and stabilization of dynamic interval systems[J].Proceedings of the 2005 International Conference on Control and Automation,Budapest,Hungary,2005:789-793.
  • 6Xie L,Fu M,Souza C E.H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback[J].IEEE Trans.on Automatic Control,1992,37 (8):1253-1256.
  • 7Khargonekar P P,et al.Robust stabilization of uncertain linear systems:quadratic stabilizability and H∞ control theory[J].IEEE Trans.on Automatic Control,1990,35:356-361.
  • 8Ngamsom P,Hoberock L L.Using robust stability analysis theorems for robust controller design[J].Journal of Dynamic Systems,Measurement and Control,2003,125(3):669-671.
  • 9Schmitendorf W E.Designing stabilizing controllers for uncertain systems using the Riccati equation approach[J].IEEE Trans.on Automatic Control,1989,33(4):376-379.
  • 10Xie L.Output feedback H∞ control of systems with parameter uncertainty[J].International Journal of Control,1996,63(4):741 -750.

共引文献4

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部