期刊文献+

一类非线性系统的混沌控制 被引量:8

Chaos Control for a Class of Nonlinear System
下载PDF
导出
摘要 描述航天器、陀螺和气浮台等刚体姿态运动的欧拉动力学方程,是一个具有广泛代表意义的三阶非线性方程。当该方程中的参数取不同值时,可得到著名的Lorenz系统、Rssler系统、Newton-Leipnik系统、Chen系统及L系统诓煌耐饬刈饔孟?该动力学系统会呈现出相当复杂的动力学行为。从该系统中,发现了一大类新的混沌吸引子。本文分析了这一类混沌吸引子具有的共同特征,并采用基于输出反馈的PI型控制器将一种新的混沌运动稳定于指定平衡点。仿真结果表明,该控制器能够有效地抑制混沌,能将系统稳定于任意指定的不稳定平衡点。 The Euler’s dynamical equation which describes the attitude motion of a rigid body (such as spacecraft, gyroscope, 3-axis air bearing table etc.) is a more generalized 3-dimensional nonlinear system. Some well-known chaotic systems (such as Lorenz system, Rssler system, Leipnik-Newton system, Chen system, Lü system etc.) can be educed from this equation by altering the parameter values. This dynamical system will exhibit very complex dynamic behaviors under the influence of different external torques. A series of new chaotic attractors are found from this system. In this paper, the common characteristics of these chaotic attractors are analyzed and a controller based on the PI-type output feed back is developed to stabilize a new chaotic motion to an appointed equilibrium point. The simulation result indicates that this control method can suppress the chaos and can regulate the state trajectory of this system to the given fixed point.
出处 《航空学报》 EI CAS CSCD 北大核心 2007年第6期1443-1448,共6页 Acta Aeronautica et Astronautica Sinica
关键词 混沌 混沌控制 反馈控制 混沌吸引子 刚体姿态运动 chaos chaotic control feed back control chaotic attractor rigid body attitude motion
  • 相关文献

参考文献10

  • 1Lorenz E N. Deterministic non-periodic flows[J]. J Atmos Sci,1963,20:130-141.
  • 2Rossler O E. An equation for continuous chaos[J].Phys Lett A,1976, 57:397-398.
  • 3Leipnik R B, Newton T A. Double strange attractors in rigid body motion with linear feedback control[J]. Phys Lett A, 1981, 86:63- 67.
  • 4黄琳,荆武兴.关于剩磁对卫星姿态确定与控制影响的研究[J].航空学报,2006,27(3):390-394. 被引量:12
  • 5马克茂,马萍.卫星姿态控制的一种鲁棒控制方法[J].航空学报,2004,25(3):289-292. 被引量:4
  • 6孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007,28(1):99-102. 被引量:10
  • 7Kuang J L, Tan S H, Arichandan K. Chaotic attitude mo tion of gyrostat satellite via Melnikov method[J]. Int J Bifurcat Chaos, 2001,11:1233-60.
  • 8Kuang J L, Meehan P A. Suppressing chaos via Lyapunov Krasovskiis method [J]. Chaos, Solitons & Fractals, 2006,27: 1408 -1059.
  • 9Jiang G P, Chen G, Tang K S. Stabilizing unstable equilibrium points of a class of chaotic systems using a state PI regulator[J]. IEEE Trans Circuits Syst I, 2002 ;49:1820-1826.
  • 10Jiang G P, Zheng W X. Chaos control for a class ofchaotic systems using PI-type state observer approach[J]. Chaos, Solitons & Fractals, 2004,21: 93-99.

二级参考文献22

  • 1Lam Q,Pal P,Welch R,et al.Magnetometer based attitude determination system using a reduced order Kalman filter[A].AIAA Meeting Papers on CD-Disk[C].Reston:AIAA,1996.535-543.
  • 2Mark M L,Martel F,Pal P.Three-axis attitude determination via Kalman filtering of magnetometer data[J].Journal of Guidance,Control,and Dynamics,1990,13(3):506-514.
  • 3Martel F,Pal P K,Psiaki M.Active magnetic control sy-stem for gravity gradient stabilized spacecraft[A].Proceedings of the Second Annual AIAA/USU Conference on Small Satellites[C].1988.
  • 4Shrivastava S K,Modi V J.Satellite attitude dynamics and control in the presence of environmental torques-a brief survey[J].Journal of Guidance,1983,6(6):461-471.
  • 5Alonso R,Shuster M D.TWOSTEP:a fast robust algorithm for attitude-independent magnetometer-biased determination[J].Journal of Astronautical Sciences,2002,50(4):433-451.
  • 6Gambhir B.Determination of magnetometer biases using module RESIDG[R].Computer Sciences Corp Technical Rept 3000-32700-01,1975.
  • 7Crassidis J L,Lightsey E G.Attitude determination usingcombined GPS and three-axis magnetometer data[J].SpaceTechnology,2001,20(4):147-156.
  • 8Lerner G M,Shuster M D.Inflight magnetometer calibration and attitude determination for near-earth spacecraft[J].Journal of Guidance and Control,1981,4(5):518-522.
  • 9Challa M.Effects of magnetometer calibration and maneuvers on accuracies of magnetometer-only attitude-and-rate determination[J].Advances in the Astronautical Sciences,1998,100(1):439-451.
  • 10CHEN G R,LAI D.Feed black anti-control of discrete chaos[J].Int.J.Bifur.Chaos,1998(7):1585-1590

共引文献22

同被引文献58

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部