摘要
(A,SA)和(H,SH)都是数域k上的Hopf代数,并且A是右H-余模代数.证明了:若存在H到A的代数同态i,i同时还是H-余模同态使得i SH=SA i,则存在A的一个子代数B,可在k空间B H上定义代数和余代数结构、对极使其成为与A同构的Hopf代数.
In this paper, (A,SA) and (H,SH) both are Hopf algebras on a field k . A is also an H-module algebra. We prove:If there is an algebra and H-comodule map i: H→A such that i . SH=SA . i ,we can get a subalgebra B of A. Then we define an algebra structure, a coalgebra structure and an antipode on the k-space such that it becomes an Hopf algebra which is isomorphic with A as Hopf algebras.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第4期11-12,25,共3页
Journal of Henan Normal University(Natural Science Edition)
基金
河南省教育厅自然科学基金(200510476001)