期刊文献+

一类Hopf代数的分解

The Factorization of a Class Hopf Algebras
下载PDF
导出
摘要 (A,SA)和(H,SH)都是数域k上的Hopf代数,并且A是右H-余模代数.证明了:若存在H到A的代数同态i,i同时还是H-余模同态使得i SH=SA i,则存在A的一个子代数B,可在k空间B H上定义代数和余代数结构、对极使其成为与A同构的Hopf代数. In this paper, (A,SA) and (H,SH) both are Hopf algebras on a field k . A is also an H-module algebra. We prove:If there is an algebra and H-comodule map i: H→A such that i . SH=SA . i ,we can get a subalgebra B of A. Then we define an algebra structure, a coalgebra structure and an antipode on the k-space such that it becomes an Hopf algebra which is isomorphic with A as Hopf algebras.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期11-12,25,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省教育厅自然科学基金(200510476001)
关键词 HOPF代数 HOPF模 余模代数 Hopf algebra Hopf module comodule algebra
  • 相关文献

参考文献5

  • 1Radford D E. The structure of Hopf algebra with a projection[J]. J Algebra,1985,92:322-347.
  • 2Schneider H J. Normal basis and transitivity of crossed products for Hopf algebras[J]. J Algebra. 1992,152: 289-312.
  • 3Montgomery S. Hopf algebra and their actions on rings[M]. Providence: American Mathematics Society, 1993.
  • 4Sweelder M E. Hopf algebra[M]. New York: Benjamin, 1969.
  • 5Majid S. Physics for algebraists:Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction[J]. J Algebra, 1990,130(1):17-64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部