摘要
利用非线性动力学理论,讨论了含有3个参数的Sprott N系统的混沌特性.在参数区间b∈[1.8,2.5]上,利用全局分岔图,Lyapunov指数谱准确的表征了系统在此区间内的丰富的非线性行为.应用时滞反馈法对系统的混沌控制进行了详细的理论分析和数值模拟.结果表明,通过该控制法,可将系统的混沌运动控制到稳定的周期运动状态.
In this paper, the chaotic characteristic of the Sprott N system with three parameters is studied with nonlinear dynamics theory. The chaotic attractor and periods are got by means of numerical simulation with different parameter values, when the abundance dynamic behavior is presented by the global bifurcation graph and the Lyapunov exponent. The system is controlled by the delayed feedback. The result indicated that the chaotic motions of the system can be successfully converted to the stable periodic orbits after the method is used to control chaos when the delayed force is added to the first equation or second equation.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第4期79-82,共4页
Journal of Henan Normal University(Natural Science Edition)
基金
甘肃省自然科学基金(3ZS042-B25-049)
兰州交通大学科研基金(DXS-07-0028
DXS-07-0029)