摘要
本文讨论了一个采取预防接种措施的非线性传染率传染病模型,得到了决定疾病流行与否的阈值θ,当θ>1时,仅存在无病平衡点E0,是渐近稳定的,当θ<1时,存在两个平衡点:无病平衡点E0和地方病平衡点E+,其中无病平衡点E0不稳定。在不考虑免疫的丧失或者不考虑因病死亡的因素的情况下,当θ>1时E0全局渐近稳定;当θ<1时E+全局渐近稳定。
An epidemic model with vaccinal immunity and nonlinear infectious rate is analyzed in this paper. Derived is a threshold θ which determines the existence of the infectious disease. When θ 〉 1, there only exists disease free equilibrium point Eo, which is asymptotically stable; when θ〈 1, there exist two equilibrium points, the disease free equilibrium point Eo and endemic equilibrium point E+, in which the Eo is unstable. Provided that there is no case of losing immunity or death of diseases, when θ 〉 1, the E0 is globally asymptotically stable, and when θ 〈 1, the E+ is globally asymptotically stable.
出处
《工程数学学报》
CSCD
北大核心
2007年第6期1042-1048,共7页
Chinese Journal of Engineering Mathematics
基金
南通大学自然科学基金(06Z008).
关键词
非线性传染率
阈值
平衡点
全局稳定性
nonlinear infectious rate
threshold
equilibrium point
global stability