期刊文献+

具有预防接种的非线性传染率传染病模型的稳定性 被引量:5

The Stability for an Epidemic Model with Vaccinal Immunity and Nonlinear Infectious Rate
下载PDF
导出
摘要 本文讨论了一个采取预防接种措施的非线性传染率传染病模型,得到了决定疾病流行与否的阈值θ,当θ>1时,仅存在无病平衡点E0,是渐近稳定的,当θ<1时,存在两个平衡点:无病平衡点E0和地方病平衡点E+,其中无病平衡点E0不稳定。在不考虑免疫的丧失或者不考虑因病死亡的因素的情况下,当θ>1时E0全局渐近稳定;当θ<1时E+全局渐近稳定。 An epidemic model with vaccinal immunity and nonlinear infectious rate is analyzed in this paper. Derived is a threshold θ which determines the existence of the infectious disease. When θ 〉 1, there only exists disease free equilibrium point Eo, which is asymptotically stable; when θ〈 1, there exist two equilibrium points, the disease free equilibrium point Eo and endemic equilibrium point E+, in which the Eo is unstable. Provided that there is no case of losing immunity or death of diseases, when θ 〉 1, the E0 is globally asymptotically stable, and when θ 〈 1, the E+ is globally asymptotically stable.
机构地区 南通大学理学院
出处 《工程数学学报》 CSCD 北大核心 2007年第6期1042-1048,共7页 Chinese Journal of Engineering Mathematics
基金 南通大学自然科学基金(06Z008).
关键词 非线性传染率 阈值 平衡点 全局稳定性 nonlinear infectious rate threshold equilibrium point global stability
  • 相关文献

参考文献8

二级参考文献43

  • 1原三领,马知恩,韩茂安.一类含时滞SIS流行病模型的全局稳定性[J].数学物理学报(A辑),2005,25(3):349-356. 被引量:13
  • 2温家宝.加强领导,落实责任,坚决打好非典型肺炎这场硬仗.http://www.moh.gov.cn.,2003.
  • 3[1]Kermark M D, Mckendrick A G. Contributions to the mathematical theory of epidemics[J]. Part Ⅰ Proc Roy Soc A, 1927; 115(5): 700-721.
  • 4[2]Horst R, Thieme, Carlos Castillo-Chavez. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS?[J]. Siam J Appl Math, 1993;53(5): 1447-1449
  • 5[3]Carlos Castillo-Chavez, Zhilan Feng. Global stability of an age-structure model for TB and its application to optimal vaccination strategies[J]. Mathematical Biosciences, 1998;151(2): 135-154
  • 6[6]寥晓昕.稳定性的理论、方法和应用[M].武汉:华中理工大学出版社,1999
  • 7Capasso V. Mathematical Structures of Epidemic Systems. Berlin: Springer-Verlay, 1993. Vol. 97 of lecture notes in Biomathematics.
  • 8Chen L, Chen J. Nonlinear Dynamical Systems of Biology. Beijing: Academic Press, 1993.
  • 9Anderson R M, May R M. Population biology of infectious diseases I. Nature, 1979,180:361-367.
  • 10Li M Y, Graef j R, Wang L, Karsai J. Global dynamics of an SEIR model with varying population size. Math Biosci, 1999,160:191-213.

共引文献102

同被引文献13

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部