摘要
Phase transformation from austenite to martensite in NiTi alloy strips under the uniaxial tension has been observed in experiments and numerically simulated as a localized deformation. This work presents an analysis using the theory of phase transformation. The jump of deformation gradient across the interface between two phases and the Maxwell relation are considered. Governing equations for the phase transformation are derived. The analysis is reduced to finding the minimum value of the loading at which the governing equations have a unique, real and physically acceptable solution. The equations are solved numerically and it is verified that the unique solution exists definitely. The Maxwell stress, the stresses and strains inside both austenite and martensite phases, and the transformation-front orientation angle are determined to be in reasonably good agreement with experimental observations.
Phase transformation from austenite to martensite in NiTi alloy strips under the uniaxial tension has been observed in experiments and numerically simulated as a localized deformation. This work presents an analysis using the theory of phase transformation. The jump of deformation gradient across the interface between two phases and the Maxwell relation are considered. Governing equations for the phase transformation are derived. The analysis is reduced to finding the minimum value of the loading at which the governing equations have a unique, real and physically acceptable solution. The equations are solved numerically and it is verified that the unique solution exists definitely. The Maxwell stress, the stresses and strains inside both austenite and martensite phases, and the transformation-front orientation angle are determined to be in reasonably good agreement with experimental observations.
基金
the National Natural Science Foundation of China(No.10272079)
the joint grant from the National Natural Science Foundation of China and the Royal Society