期刊文献+

超声声场中气泡的锥状聚集现象 被引量:4

Cone-like cavitation bubble formation in ultrasonic field
下载PDF
导出
摘要 从非线性KZK(khokhlov-zabolotskaya-kuznetsov)方程出发,利用分离变量法,得到了换能器的声场分布表达式和声场分布图.结果表明,当轴向距离大于瑞利距离时,声压随距离增加逐渐减小到某一极限值,近似为平面波.声场中气泡锥状聚集主要发生区域是声压较大且呈现梯度的区域,气泡脉动影响声场分布,气泡间的Bjerknes力作用对气泡在高声压区的分布有调节作用,从而可引起声场出现锥状气泡结构现象. Based on the nonlinear KZK (khokhlov-zabolotskaya-kuznetsov)equation, the expression and distribution of sound field are obtained. When the axis distance is beyond the Raileigh distance, the sound pressure will minimize to a certain limit value, which shows the sound field is a plane wave in that range. The CBS (Cone-like bubble structure) occurs in the area where the pressure is higher and the grads of pressure is not zero, The bubbles' radial vibration has an effect on the distribution of sound field. The mutual Bjerknes forces between bubbles adjust the distribution of bubbles, which causes CBS.
作者 王成会
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期45-48,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10674090)
关键词 KZK方程 声场分布 Bjerknes力 气泡锥状聚集现象 khokhlov-zabolotskaya-kuznetsov (KZK) equation distribution of sound wave Bjerknes force Cone-like bubble structure(CBS)
  • 相关文献

参考文献9

  • 1陈思忠.我国功率超声技术近况与应用进展[J].声学技术,2002,21(1):46-49. 被引量:43
  • 2Juerg Ellenberger, Jasper M, van Baten, et al. Exploiting the Bjerknes force in bubble column reactors[J]. Chemical Engineering Science, 2005, 60 (22) : 5 962-5 970.
  • 3Tiberiu Barbat, Nasser Ashgriz. Planar dynamics of two interacting bubbles in an acoustic field [ J ]. Applied Mathematics and Computation, 2004, 157(3): 775-824.
  • 4何国庚,罗军,黄素逸.空泡溃灭的Bjerknes效应[J].水动力学研究与进展(A辑),2000,15(3):337-341. 被引量:8
  • 5Alexei Moussatov, Granger C, Dubus B. Cone-like bubble formation in the cavitation field [ J ]. Ultrasonics Sonochemistry, 2003,10 (4) : 191-195.
  • 6Cleofe Campos-Pozuelo, Christian Granger, Christian Vanhille etc. Experimental and theoretical investigation of the mean acoustic pressure in the cavitation fidd [ J ]. Ultrasonics Sonochemistry, 2005, 12(1) : 79-84.
  • 7Mettin R, Luther S, Ohl C D, et al. Acoustic cavitation structures and simulations by a particle model [ J ]. Ultrasonics Sonochemistry, 1999, 6(1) :25-29.
  • 8Humphrey V F. Nonlinear propagation in ultrasonic field [J]. Ultrasonics, 2000, 38(3): 267-272.
  • 9陶超,马健,朱哲民,杜功焕,平自红.非线性超声束的冲击波形成研究[J].声学学报,2004,29(2):115-121. 被引量:7

二级参考文献25

  • 1刘克.大振幅驻波的实验研究Ⅱ:驻波场谐波的饱和[J].声学学报,1995,20(5):393-398. 被引量:11
  • 2刘克.大振幅驻波的实验研究──Ⅲ:三次谐波的共振[J].声学学报,1995,20(6):466-468. 被引量:5
  • 3D罗斯.水下噪声原理[M].北京:海洋出版社,1983..
  • 4黄景泉.空化起始条件的确定.应用数学和力学,1989,10(2):155-159.
  • 5Rudenko O V, Soluyan S I. Theoretical foundations of nonlinear acoustics. New York: Plenum, 1977.
  • 6MAA Dah-You, Liu K. Nonlinear standing waves: theory and experiments, J Acoust Soc Am , 1995; 98(5):2753-2763.
  • 7Aanonsen S I, Barkve T, Na.ze Tjotta J, Tjotta S. Distortion and harmonic generation in the nearfield of a finite amplitude sound beam. J Acoust Soc Am , 1984; 75(3):749-768.
  • 8Harmilton M F, Naze Tjotta J, Tjotta S. Nonlinear effects in the farfield of a directive sound source. J Acoust Soc Am , 1985; 78(1): 202-216.
  • 9Averkiou M A, Hamilton M F. Nonlinear distortion of short pulses radiated by plane and focused circular pistons. J Acoust Soc Am , 1997; 102(5): 2539-2548.
  • 10Tavakkoli J, Cathignol D, Souchon R, Sapozhnikov O A. Modeling of pulsed finite-amplitude focused sound beams in time domain. J Acoust Soc Am , 1998; 104(4):2061-2072.

共引文献55

同被引文献38

  • 1陈誌敏.欧拉法与Matlab数值求解[J].武汉交通职业学院学报,2006,8(1):67-69. 被引量:3
  • 2WANG ChengHui & LIN ShuYu Institute of Applied Acoustics, Shaanxi Normal University, Xi’an 710062, China.The nonlinear standing wave inside the space of liquid[J].Science China(Physics,Mechanics & Astronomy),2010,53(3):496-503. 被引量:2
  • 3陈伟中,黄威,刘亚楠,高贤娴.声空化泡动力学及其测量[J].中国科学(G辑),2006,36(2):113-123. 被引量:10
  • 4Yang X M, Roy R A, Holt R G. Bubble dynamics and size distributions during focused ultrasound insonation [J]. Acoustical Society of America, 2004, 116 (6):3423-3431.
  • 5Akhatov I, Parlitz U, Lauterborn W. Towards a theory of self-organization phenomena in bubble-liquid mixtures [J]. Physical Review: E, 1996, 54(5): 4990-5003.
  • 6Doinikov A A, Zavtrak S T. On the "bubble grapes" induced by a sound field[J].Acoustical Society of America, 1996, 99(6): 3849-3850.
  • 7Alexander A D. Translational motion of two interacting bubbles in a strong acoustic field[J]. Physical Review.. E, 2001, 64; 1-6.
  • 8Yurii A, Ilinskii, Mark F, et al. Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics[J].Acoustical Society of America, 2007, 121 (2): 786- 795.
  • 9Mark F, HamiLton. Yurii A. et al. Interaction of bubbles in a cluster near a rigid surface[J]. Acoustics Research Letters Online, 2005, 6(3): 207-213.
  • 10Yurii A, Ilinskii E A, Zabolotskaya. Cooperative radiation and scattering if acoustic waves by gas bubbles in liquids[J]. Acoustical Society of America, 1992, 92 (5) : 2837-2841.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部