期刊文献+

模5不同余平面格点的形心问题研究

Study on the centroid of lattice points in a plane when lattice points are different after mod 5
下载PDF
导出
摘要 对平面格点进行模5运算,建立了由25个不同剩余类格点排成5个行环、5个列环的环面格子网,称为模5环面,记为Z25.讨论了Z25上了格点之间、行之间、列之间、对角线之间的对称性,根据这些对称性得出了Z25上形心仍为格点的5个格点的分布情形.证明了当格点模5不同余时,任意9个格点中,必有5个格点其形心仍为格点,即公式n(5)=9成立. Using modulo 5 (mod 5)operation of the lattice points in the plane, 25 lattice points are arranged into a ring surface lattice with 5 row rings and 5 column rings. The ring surface is called mod 5 ring surface, marked Z5^2. Symmetry between lattice points, between rows, between columns, and between diagonals are discussed, respectively. Based on these symmetries, it is pointed out that the distributing law of the 5 ! lattice points on Z5^2 whose centroid on is still a lattice point. It is proved that when lattice points have different remainders after mod 5 operation, in any 9 lattice points, there exist 5 lattice points whose centroid is still a lattice point, the formula n (5) = 9 found.
作者 赵白云
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期120-121,共2页 Journal of Shaanxi Normal University:Natural Science Edition
关键词 平面格点 形心 模5同余 环面 对称性 lattice point in the plane centroid rood 5 anchor ring symmetry
  • 相关文献

参考文献3

二级参考文献7

  • 1P.ErdSs, A.Ginzburg and A.ziv,Bull. Res. Council Israel, 10F(1961) 41-43.
  • 2H.Harborth, Gitterpunktprobleme, J.Reine Angew. Math.309 (1979) 149-155.
  • 3Problem 6298, Amer. Math. Monthly 89 (1982) 279-280.
  • 4M.J.Erickson, Introduction to Combinatorics, John Wiley & Sons, NewYork 1997.
  • 5Martin J. Erickson, Introduction to Combinatorics[M]. JOHN WILEY & SONS, INC, 1996.
  • 6周士藩,汤正谊,孙存金. 抽屉原则与涂色问题[M]. 南京:江苏人民出版社,1981.
  • 7Problem 6298[J]. Amer. Math. Monthly. 1982,89:279-280.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部