摘要
自然科学与工程中的许多问题都可以转化为非线性方程组的求解问题。牛顿迭代法是重要的一维及多维的迭代技术,其迭代本身对初始点非常敏感。应用参数耦合超混沌系统产生初始点,分析了混沌序列的概率特性,首次提出了基于参数耦合概率超混沌的牛顿迭代法求解非线性方程组的新方法。机构综合与近似综合实例表明了该方法的正确性与有效性。
Many questions in natural science and engineering are transformed into nonlinear equations to be found, Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess point. The probability characteristic of hyperchaotic sequences produced by parameter coupled hyperchaotic system was analyzed. For the first time, a new method to find all solutions based on utilizing parameter coupled probability hyperchaotic mapping to obtain locate initial points to find all solutions of the nonlinear questions was proposed. The numerical examples in linkage synthesis and approximate synthesis show that the method is correct and effective.
出处
《机械传动》
CSCD
北大核心
2007年第5期16-18,共3页
Journal of Mechanical Transmission
基金
湖南省"十一五"重点建设学科(机械设计与理论)(湘教通2006180)
湖南省自然科学基金湖南省教育厅重点项目(04A036)
湖南省科技厅计划项目
关键词
超混沌系统
参数耦合法
概率
连杆机构
非线性方程组
Hyperchaotic system Probability Parameter coupled mapping Linkage mechanism Nonlinear equations