期刊文献+

基于神经网络的齿轮故障诊断专家系统 被引量:16

Expert System of Gear's Fault Diagnosis based on Neural Network
下载PDF
导出
摘要 基于齿轮典型故障机理及其信号特征,采用时域、幅值域与频谱分析相结合的诊断方法,建立了齿轮故障诊断神经网络模型,试验验证模型诊断结果具有较高准确性。基于Windows平台和Visual C++语言,开发了基于神经网络的齿轮故障诊断专家系统,将传统的时频信号分析理论与现代小波分析、神经网络和专家系统技术融入齿轮故障诊断之中,形成一个更加完善基于神经网络的齿轮故障诊断专家系统。 On the basis of the typical fault mechanisms and vibration characters,a neural network model is set up for fault diagnosis, the test results show that the higher accuracy of the model. An expert system of gear's fault diagnosis based on neural network is also constructed by applying Windows system and Visual C++ program. traditional method of signal analysis, advanced analysis methods are integrated into gear's fault diagnosis, such as wavelet transform, neural network, and expert system technology, and a multifunction expert system. The software of this system has been researched and programmed.
出处 《机械传动》 CSCD 北大核心 2007年第5期81-83,共3页 Journal of Mechanical Transmission
基金 国家自然科学基金项目(50275025)
关键词 齿轮 故障诊断 神经网络 专家系统 Gear Fault diagnosis Neural network Expert system
  • 相关文献

参考文献6

  • 1W.J.STASZEWSKI,G R.TOMLINSON.Application Of The Wavelet Transform To Fault Detection In A Spur Gear.Mechanical Systems and Signal Processing,1994,8(3):289-307.
  • 2曹文莉,夏永青,李磊,胡小江.神经网络在齿轮故障诊断中的应用[J].冶金设备,2006(2):65-66. 被引量:8
  • 3S.K.ONG,N.AN,A.Y.C.NEE.Web-based Fault Diagnostic And Learning System,The International Journal of Advanced Manufacturing Technology,2001(18),502-511.
  • 4ROAN M J,ERLING J G,SIBULl L H.A New Non-linear Adaptive Blind Source Separation Approach To Gear Tooth Failure Detection And Analysis.Mechanical Systems and Signal Processing,2002,16(5):719-74.
  • 5Zheng G T,MCFADDEN P D.A Time Frequency Distribution For Analysis of Signals With Transient Components And Its Application To Vibration Analysis.Journal of Vibration and Acoustics,ASME Transactions,1999,121(3):32A-333.
  • 6G.DALPLAZ,A.RIVOLA and R.RUBINIi.Effectiveness And Sensitivity of Vibration Processing Techniques For Local Fault Detection In Gears.Mechanical Systems and Signal Processing,2000,14(3):387-412.

二级参考文献2

共引文献7

同被引文献191

引证文献16

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部