摘要
滑坡异常信息提取对滑坡预测预报至关重要。以四川丹巴滑坡为例,应用人工免疫算法对滑坡镜2、镜6和镜9的位移监测数据进行压缩,分别获得最优压缩率为0.821,0.819,0.829,保真度为0.95。并在置信水平为0.95的条件下,对压缩后数据进行异常提取,分别获得了3个监测点的4个异常信息。这些异常信息所反映的滑坡变形发展演化规律与滑坡声发射等其他监测信息所反映的规律基本保持一致,说明应用人工免疫算法对滑坡位移监测数据进行压缩处理可以在保持原有数据的特性与规律的同时,有效除去监测数据中的冗余与不相关信息,增加有效数据密度,有利于准确提取滑坡异常信息。
The extraction good reflection to lands landslide from complex immune algorithm is algorithm is used to of anomaly is a very impor lide. Therefore, how to data information is a key proposed compress rant technique for landslide forecasting owing effectively problem. extr act the anomaly really relat applied method-- the art for data compression in this paper. In ca the displacement data of the monitoring to its ed to ificial se study, the artificial immune point 2, 6 and 9 of the Danba landslide in Sichuan, China. And three data sets got rid of the impacts of redundancy and irrelevancy are obtained, whose optimal compression rates are 0. 821, 0. 819, 0. 829 respectively and fidelity is 0.95. Then, the anomaly recognition method is used to the compressed data, and four obvious anomalies are obtained under the confidence level of 0.95. The anomalies reflecting to landslide are in accordance with the other monitoring information such as acoustic emission of rocks. So, it can be easily concluded that the AIA algorithm could be used to compress the monitoring data with higher data density and lower redundancy and irrelevancy.
出处
《成都理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第6期621-625,共5页
Journal of Chengdu University of Technology: Science & Technology Edition
基金
数学地质四川省高校重点实验室资助
高等学校博士学科点专项科研基金资助项目(20040616005)
四川省科技厅应用基础研究项目(05JY029-087-1)
成都理工大学"地质灾害防治与地质环境保护"国家重点实验室专项基金资助项目(GZ2005-09)
关键词
免疫算法
数据压缩
滑坡
异常提取
immune algorithm
data compression
landslide
extraction of anomaly