期刊文献+

整数群上一类和超差集合的构造

A construction of sets with more sums than differences of integers
下载PDF
导出
摘要 考虑了整数群子集自身和及自身差势的问题,基于对前人给出的几类整数群上超差集合构造的研究,通过对典型有限和超差集合A1的有限分解,即A1={0,2}∪{3,7,11,…,4k-1}∪{4k,4k+2}∪{4},其中k是不小于3的正整数,证明给出了整数群上一类无限的和超差集合的构造,使集合的势从有限上升为无限,拓展了前人的理论成果。 This paper discusses the problem of the cardinality of the sums and differences of subsets of integers. It researches the constructions of some sets with more sums than differences of integers that were given by predecessors. A typical finite set A1 is decomposed, that is, A1={0, 2}∪ {3, 7, 11,…, 4k-1} ∪{4k, 4k+2} ∪ {4}, here k is integer and k≥3. The paper also gives out a construction of infinite sets with more sums than differences of integers, making the cardinality of the sets from finiteness rise to infiniteness and extending predecessors' theoretically achievements.
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期683-685,共3页 Journal of Chengdu University of Technology: Science & Technology Edition
基金 数学地质四川省高校重点实验室资助
关键词 整数群 子集 对称 和超差集合 integer subset symmetry sets with more sums than differences
  • 相关文献

参考文献10

  • 1FREIMAN G A, PIGAREV V P. The relation between the invariants R and T [C]// Number-Theoretic Studies in the Markov Spectrum and in the Structural Theory of Set Addition. Moscow: Kalinin University, 1973: 172-174.
  • 2MARICA J. On a conjecture of Conway[J]. Canada Mathematics Bulletin, 1969, 12: 233-234.
  • 3HENNECART F, ROBERT G, YUDIN A. On the number of sums and differences[J]. Structure Theory of Set Addition, 1999, 25: 173-178.
  • 4STEIN S K. The cardinalities of A+A and A-A [J]. Canada Mathematics Bulletin, 1973, 16: 343- 345.
  • 5RUZSA I Z. On the cardinality of A+A and A-A [J]. College Mathematics Society, 1978, 18: 933-938.
  • 6RUZSA I Z. Sets of sums and differences[J]. Seminaire de Theorie des Nombres de Paris, 1984, 18: 267-273.
  • 7RUZSA I Z. On the number of sums and differences [J]. Acta Mathematics Science, 1992, 59: 439-447.
  • 8NATHANSON M B. Problems in additive number theory[DB/OL]. [2007-06-15]. http://www. arxiv. org/math. NT/0604340.
  • 9O' BRYANT K, Many sets have more sums than differences[DB/OL]. [2007-08-30]. http://www. arxiv.org/math. NT/0608131.
  • 10ROESLER F. A mean value density theorem of additive number theory[J]. Acta Arithmetic, 2000, 42 (2) : 121-138.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部