摘要
一个图的自同构群通常反映了该图的对称性,讨论一个图的自同构群构造是代数图论中的基本问题之一。直观上可以看出,圈Cn的自同构群是2n阶的,但对于其具体构造目前还没有形式化的证明。作者基于群作用的思想,利用群的轨道方程对此问题研究,得出Cn的自同构群是一个二面体群的结论。通过严格的推证,表明该结论是可靠的。
The automorphism group usually reflects the symmetry of a graph. To determine the construction of the group of a graph is one of the focus problems in algebraic graph theory. Intuitionally, the authors think that the order of Aut(Cn) is 2. But there is never a machinery proof for now. In this paper, the problem will be solved by the orbit equation based on the action of a group on the vertex set of cycle Cn. Therefore, the authors will know that the automorphism group of a cycle on n vertices is isomorphic to a dihedral group.
出处
《成都理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第6期689-690,共2页
Journal of Chengdu University of Technology: Science & Technology Edition
基金
数学地质四川省高校重点实验室资助
关键词
圈
自同构群
二面体群
cycle
automorphism group
dihedral group