摘要
基于人工神经网络建立变切削条件下的钻头磨损监控系统。以机床主轴和进给轴的电机功率(电流)信号为监控信号,并通过机床的速度向量识别机床的加工状态;通过对监控信号的提取和预处理,得到人工种经网络模型的输入(有效切谢功率和切削用量);用3层BP网络对钻头的磨损量进行预报。
Drill wear monitoring system un-der varying cutting conditions based on artificialneural networks is established. The main motorpower and feed motor power of the machine toolare used as monitoring signals and the machinespeed vectors are used to recognize the workingstatus. This system gets the inputs of ANN (netcutting powers and machining conditions ) afterextracting and preprocessing the monitoring sig-nals. Three layers BP network is applied to mon-itor drill wear. Theoretical analysis and experi-mentaI results indicate that ANN model can beused in cutting tool wear monitoring under vary-ing cutting conditions and has high predictionprecision. The monitoring system possesses goodreliability and adaptability.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
1997年第2期25-27,共3页
China Mechanical Engineering
基金
国家863高技术计划!863-ERC85-1
关键词
人工神经网络
磨损
钻头
磨损监控系统
ANN tool monitoring tool wear varying cutting condition drill