摘要
半马尔可夫决策过程(SMDP)描述的一类受控半Markov系统,其模型参数在实际中常常不确定或不可知,可能导致随机过程的性能函数和系统参数(即嵌入链转移概率和状态逗留时间分布)皆不确定。该文针对参数不相关的情况,给出求解鲁棒控制策略的迭代算法,并在迭代过程中引入遗传算法,以提高全局优化能力。数值例子表明,基于遗传算法的策略迭代应用于鲁棒决策问题中具有较好的优化效果。
For a class of controlled semi-Markov systems, which are formulated as semi-Markov deci- sion processes(SMDPs), some parameters are usually indeterminate or unknown, and the performance function or the system parameters, i. e. , the transition probabilities of the embedded chains and the sojourn time distribution of states, may be uncertain. For the case of independent parameters, a policy iteration is provided to derive the robust control policy, and the genetic algorithm is applied in order to improve the optimization result. The numerical example shows that the genetic algorithm-based policy iteration works well for robust decision problems.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第11期1404-1407,共4页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(60404009)
安徽省自然科学基金资助项目(050420303)
合肥工业大学中青年科技创新群体计划资助
关键词
半马尔可夫决策过程
性能势
鲁棒控制
遗传算法
semi-Markov decision process
performance potential
robust control
genetic algorithm