期刊文献+

非连续性结构的样条QR法

Spline QR methods for discontinue construction
下载PDF
导出
摘要 混凝土结构中本身存在的或在使用过程中出现的诸如节理、裂纹和孔隙等缺陷往往对整个结构的失稳或破坏起着控制作用。在有限元的基础上提出一个能模拟诸如裂纹、节理等非连续性结构的新技术——非连续样条QR法,该方法采用样条QR法并结合非有限元法的优点,可以很方便计算非连续性结构,无需要重新划分网格。该方法与有限元相比,具有较大的优势,避免了流动法则理论带来的困难及缺陷,在算法上数值计算量不大,迭代收敛速度快,不仅计算快,而且精度高。 Whole structure is often controlled by some discontinuous structure during it's destroy and losing stabilization, such as cracks and joints.Spline QR method, as a new technique for modeling discontinuities such as cracks and joints in the finite element framework,is presented. This method takes advantage of excellence of QR and finite element methods.A standard displacement-based approximation is enriched near a discontinuity by incorporating both discontinuous fields and the near tip asymptotic fields function. This technique allows the entire discontinuity to be represented independently of the mesh, and so remeshing is not necessary to model the evolvement of discontinuity.Comparing with finite element, this method is more economical and forthright for computing, and difficulties in flow rule is avoided.Then, iteration convergence and computing is more rapid, what's more, computing precision is higher.The computed result show that QR method is a better method.
出处 《混凝土》 CAS CSCD 北大核心 2007年第11期6-7,11,共3页 Concrete
关键词 非连续结构 样条 QR法 discontinuous structure spline QR method
  • 相关文献

参考文献6

  • 1夏晓舟,章青,李国华,徐道远,刘光焰.模拟不连续介质的非连续有限元法[J].河海大学学报(自然科学版),2005,33(6):682-687. 被引量:6
  • 2王泳嘉 邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991..
  • 3卓家寿 章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2001.1-262.
  • 4石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 5Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering, 1999,45 : 601-620.
  • 6Belytschko T,Moes N,Usui S,Parimi C,Arbitrary discontinuities in finite elements[J].International Journal for Numerical Methods in Engineering, 2001,50:993-1013.

二级参考文献8

  • 1切列帕诺夫 黄克智 译.脆性断裂力学[M].北京:科学出版社,1990..
  • 2王泳嘉 邢纪波.离散单元法及其在岩土工程中的应用[M].沈阳:东北工学院出版社,1991..
  • 3石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 4卓家寿 章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2001.1-262.
  • 5BELYTSCHKO T,BLACK T.Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering,1999,45:601-620.
  • 6BELYTSCHKO T,MOES N,USUI S,et al.Arbitrary discontinuities in finite elements[J].International Journal for Numerical Methods in Engineering,2001,50:993-1013.
  • 7MOES N,DOLBOW J,BELYTSCHKO T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131-150.
  • 8STROUBOULIS T,COPPS K,BABUSKA I.The generalized finite element method: an example of its implementation and illustration of its performance[J].International Journal for Numerical Methods in Engineering,2000,47(8):1401-1417.

共引文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部