期刊文献+

指数为π-数的极大子群的交(英文) 被引量:6

The Intersection of Maximal Subgroups with Index a π-number
下载PDF
导出
摘要 对任意群G,Frat(G)是指G的极大子群的交.研究指数为π-数的极大子群的交,即πFrat(G),得到与Frat(G)类似的性质. For any group G, the Frattini subgroup Frat(G) is the intersection of all the maximal subgroups of G. In this paper we investigate the characteristic subgroup, πFrat(G) , which is defined as the intersection of all the maximal subgroups with index a π-number. The properties of πFrat(G) are studied and results analogous to those of the Frattini subgroup are established.
作者 张志让 王英
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期688-690,共3页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10171118)资助项目
关键词 FRATTINI子群 极大子群 π-非生成元 DEDEKIND群 :The Frattini subgroup Maximal subgroups π-nongenerators Dedekind groups
  • 相关文献

参考文献10

  • 1Frattini G. Intomo alia generazione dei gruppi dioperazioni[ J ]. Real Academia dei Lincei Rend, 1885 (1) :281-285,455-456.
  • 2Gaschutz W. Usher die φ-untergruppe endlicher Gruppen[ J ]. Math Zeit, 1953,58 : 160-170.
  • 3Deaeoneseu M. On Frattini-like subgroups of finite groups [ J ]. Math Rep, 1986 (2) :385-498.
  • 4Deaconescu M. On Frattini-like subgroups[ J ]. Math Japn,1985,30:777-781.
  • 5Kappe L C, Kirtland J. Some analogues of the Frattini subgroup[J]. Algebra Colloq,1997,4(4) :419-426.
  • 6Zhang Zhi-rang. The interseetion of maximal subgroups with finite index[ J']. SEA Bull Math,2006,30:1-6.
  • 7Doerk K, Hawkes T. Finite Solluble Groups[ M ]. New York : Walter de Gruyter, 1992.
  • 8Robinson D J S. A Course in the Theory of Groups[ M]. New York:Springer-Verlag, 1996.
  • 9李晓华.Frattini子群的一些推广[J].四川师范大学学报(自然科学版),2000,23(3):238-241. 被引量:6
  • 10Mukherjee N P, Bhattacharya P. On the intersection of a class of maximal subgroup of a finite group[ J ]. Can J Math, 1987,39: 603-611.

二级参考文献4

  • 1[3] Mukherjee N P, Bhattacharya P. On the intersection of a family of maximal subgroups containing the sylow subgroups of a finite group[J]. Can J Math,1988,40:352~359.
  • 2[4] Huppert B. Endliche Gruppen[M]. New York:Spring Verlag,1979.
  • 3[1] Deskins W E. On maximal subgroups[A]. Albert A A. Proc Sympos Pure Math[C]. Providence 6 R I:Amer Math Soc,1959,(1):100~104.
  • 4[2] Mukherjee N P, Bhattacharya P. On the intersection of a class of maximal subgroup of a finite group[J]. Can J Math,1987,39:603~611.

共引文献5

同被引文献63

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部