期刊文献+

多项式环的*_w-理想与*-UMT整环 被引量:1

The *_w-Ideal in Polynomial Rings and the *-UMT Domains
下载PDF
导出
摘要 研究了多项式环上的*w-理想的性质,证明了如下结论:(1)如果Q是R[X]中的极大*w-理想且Q∩R≠0,则Q=(Q∩R)[X];(2)如果p是R[X]中的UTZ,p是*w-可逆理想当且仅当p是极大的*w-理想,当且仅当c(p)是*w-可逆理想;(3)R是P*tMD整环当且仅当R是P*MD整环,当且仅当R是P*wMD整环.还引入了*-UMT整环的概念,证明了在*-UMT整环中,*w=*t. In this paper, we study the properties of * w-ideals of polynomial tings. We prove the following results: ( 1 ) if Q is a maximal * ,w-ideal of R[ X] and Q n R # 0, then Q = (Q ∩ R) [ X] ; (2) if p is a UTZ of R[ X], then p is a * w-invertible ideal if and only if p is a maximal * w.-ideal if and only if c(p) is a * -invertible ideal; (3) R is a P* ,MD domain if and only ifR is a P* MD domain.In addition,we introduce the notion of *-UMT domain,and prove*w=*,for the *-UMT domains.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期700-703,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10671137) 教育部博士点专项基金(20060636001) 四川省重点学科建设基金资助项目
关键词 *-GV理想 容度 P*tMD整环 *-UMT整环 * -GV ideal Content P * ,MD domain * -UMT domain
  • 相关文献

参考文献4

二级参考文献66

  • 1王芳贵.GCD整环与自反模[J].数学年刊(A辑),1994,1(2):241-245. 被引量:3
  • 2[1]Houston E, Zafrullah M. On t-invertibility II[J]. Comm Algebra,1989,17:1955~1969.
  • 3[2]Houston E, Malik S B, Mott J. Characterizations of *-multiplication domains[J]. Canad Math Bull,1984,27:48~52.
  • 4[3]Kaplansky I. Commutative Rings[M]. Chicago:University of Chicago Press,1974.
  • 5[4]Wang F G, McCasland R L. On strong Mori domains[J]. J Pure Appl Algebra,1999,135:155~165.
  • 6[5]Dobbs D, Houston E, Lucas T, et al. t-Linked overrings and Prüfer v-multiplication domains[J]. Comm Algebra,1989,17:2835~2852.
  • 7[6]Anderson D F, Houston E G, Zafrullah M. Pseudo-integrality[J]. Canad Math Bull,1991,34:15~22.
  • 8[7]Dobbs D, Houston E, Lucas T, et al. On t-linked overrings[J]. Comm Algebra,1992,20:1463~1488.
  • 9[8]Gilmer R. Multiplicative Ideal Theory[M]. New York:Marcel Dekker Inc,1972.
  • 10[9]Matsumura H. Commutative Ring Theory[M]. New York:Cambridge University Press,1989.

共引文献32

同被引文献21

  • 1Gilmer R.Multiplicative Ideal Theory[M].New York:Marcel Dekker,Inc,1972.
  • 2Arnold J T,Gilmer R.The dimension sequence of a commutative ring[J].Am J Math,1974,96:385-408.
  • 3Arnold J T.On the dimension theory of overrings of an integral domain[J].Trans AMS,1969,138:313-326.
  • 4Bouchibaa S,Dobbs D E,Kabbaj S.On the prime ideal structure of tensor products of algebras[J].J Pure Appl Algebra,2002,176:89-122.
  • 5Bouchiba S,Girolami F,Kabbaj S.The dimension of tensor products of AF rings[C]//Lecture Notes in Pure and Applied Mathematics.New York:Marcel Dekker Inc,1997,185:141-154.
  • 6Bouchibaa S,Girolamib F,Kabbajc S.The dimension of tensor products of K-algebras arising from pullbacks[J].J Pure Appl Algebra,1999,137:1-14.
  • 7Gilmer R,Heinzer W.Prime ideals of finite height in polynomial rings[J].Houston J Math,1998,24:9-20.
  • 8Jaffard P.Therie de la Dimension dans les Anneanz de Polynomes[M].Paris:Gauthier-Villars,1960.
  • 9Anderson D F,Bourer A,Dobbs D E,et al.On Jaffard domains[J].Expo Math,1988,6:145-175.
  • 10Kabbaj S.On the dimension theory of polynomial rings over pullbacks[C]//Multiplcative Ideal Theory in Commutative Algebra.New York:Springer,2006:263-278.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部