期刊文献+

论环与模的结构关系 被引量:2

On Structure Relation of Rings and Modules
下载PDF
导出
摘要 对Von Neumann正则环,Exchange环,CS环和Extending模的理论进行了研究,具体内容包括:(1)对CS环、Von Neumann正则环的关系进行了研究,刻划了它们之间关系;(2)用Extending模对一类Von Neumann正则环进行了刻划;(3)对CS环和Exchange环的关系展开进行了研究,在CS环上刻划了类似于Exchange环的结构. In this paper, the theories about Von Neumann regular rings, Exchange rings, CS rings and Extending modules are investigated. The relations between CS tings and Neumann regular rings are discussed and the relations of them are given. And then a special class of Von Neumann regular rings is characterized via Extending modules. Finally, the relations between CS rings and Exchange rings are studied and the structure which is similar to Exchange rings is characterized on CS rings.
作者 唐再良
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期737-739,共3页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点基金资助项目
关键词 Von Neumann正则环 CS环 EXCHANGE环 Extending模刻划 Von Neumann regular CS ring Exchange ring Exchange modules characterize
  • 相关文献

参考文献10

  • 1Snider R L. Semiprimitive π-renular finns of bounded index are left max rings [ J]. Commun Algebra,2001,29 (12) :5433-5437.
  • 2Utumi Y. On contious and self-injective rings [ J ]. Trans Am Math Soc, 1965,118 : 158-173.
  • 3Hamsher R M. Commutative rings over which every module has a maximal submodule[ J ]. Proc Am Math Soc, 1967,18:1133-1137.
  • 4Faith C. Alnebra Ⅱ: Rinn Theory[ M ]. Berlin : Springer-Verlag, 1976:74-85.
  • 5Stenetrom B. Rings of Quotients [ M ]. Berlin : Sprinner-Verlan, 1975:252-254.
  • 6Birkermeier G F. A geneneralization of FPF rings [ J ]. Commun Algebra, 1989,17:855-884.
  • 7Anderson F W, Fuller K R. Rings and Categorits of Modules[ M]. Berlin:Sprinner-Verlan, 1974:118-121.
  • 8Lopez-Permouth S R, Oshirok, Tariqrizvis. On the relative ( quasi- ) continuity of modules [ J I. Commun Algebra, 1998,26:3497-3510.
  • 9Nicholson W K. Lifting idempotents and exchange rings[ J]. Trans Am Math Soc, 1977,229:269-278.
  • 10McCarthy P J. The ring of polynomials over a yon Neumann renular ring[ J ]. Proc Am Math Soc, 1973,39 (2) :253-254.

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部